
Autonomous Management of Virtual Machine Failures
in IaaS Using Fault Tree Analysis

Alexandru Butoi, Alexandru Stan, and Gheorghe Cosmin Silaghi

Business Information Systems Department,
Babeş-Bolyai University, Cluj-Napoca, Romania

alex.butoi,alexandru.stan,gheorghe.silaghi@econ.ubbcluj.ro

Abstract. Cloud IaaS services bring the novelty of elastic delivery of compu-
tational resources in a virtualized form and resource management through easy
replication of virtual nodes and live migration. In such dynamic and volatile envi-
ronments where resources are virtualized, availability and reliability are manda-
tory for assuring an accepted quality of service for end users. In this context spe-
cific fault tolerance strategies are needed. Using concepts from fault tree analysis,
we propose a distributed and autonomous approach where each virtualized node
can assess and predict its own health state. In our setup each node can proactively
take a decision about accepting future jobs, delegate jobs to own replicated in-
stances or start a live migration process. We practically evaluate our model using
real Xen log traces.

Keywords: VM Fault Tolerance, Fault Trees, Fault Agent, Xen Log Traces.

1 Introduction

Cloud computing is continuously changing the way we do computation in any do-
main: business or science. It comprises the idea of delivering computation as a service
in a pay-per-use manner through virtualization technology. In the Infrastructure-as-a-
Service (IaaS) model, resources are virtualized and delivered as “a service” using Ser-
vice Level Agreements (SLA) which guarantee certain levels of quality of service (QoS)
for end users. Within IaaS, service reliability and availability are of a great importance
for a successful service delivery and these objectives can be achieved through complex
distributed fault tolerant design. Virtualization brings elasticity in resource provisioning
of the cloud, with the meaning that if end users request additional computing resources,
they can be provisioned on-demand, transparent to the user.

In general, cloud providers pay a cost for supplying the above mentioned service
characteristics: reliability, availability and elasticity. Thus, fault tolerant models that
can mitigate provider costs with high levels of QoS are of great interest.

In this paper we develop and evaluate a fault tolerance model for achieving the
above-mentioned characteristics within the IaaS cloud model. We use machine replica-
tion and live migration as basic tools and present a fault tolerant design to pro-actively
decide when replication and live migration processes should be initiated. With the help
of fault tree analysis, we are able to predict the health state of a virtual machine and
based on this, to keep high levels of reliability and availability.

2 Alexandru Butoi, Alexandru Stan, and Gheorghe Cosmin Silaghi

The paper is organized as follows. Section 2 describes the problem under study
and presents some basic concepts from Fault Tree Analysis. Section 3 details our fault
tolerance model, section 4 disseminates the experimental results of a primary imple-
mentation of the model. Section 5 reviews several important results in the field, and
conclusion ends the paper.

2 Background

In this section we describe and formally present the problem under study and some
insights about the modeling tool used in this respect.

2.1 Problem Specification

We approach a data center where computing power is delivered under the paradigm of
“Infrastructure as a Service”. IaaS is achieved with the help of a virtualization technique
like Xen. Each deployed virtual machine (VM) requires a certain amount of resources,
like CPU, RAM, bandwidth and storage, taken from the global pool of the data center.
When a VM is instantiated, a service level agreement (SLA) is created for that VM,
indicating the amount of resources allocated for the VM. Total available resources of
the data center diminishes with every instantiated VM. For this paper, we will work only
with the four types of resources enumerated above, without restricting the generality of
our approach to other types of resources.

For a successful IaaS service delivery, two characteristics are mandatory to be ac-
complished: availability and reliability. Service availability is measured with the help
of the accepted failure rate of the VM, denoted by naturalQ, expressed as the time the
machine is not available for usage out of the total time the machine is allocated on the
data center. Required service availability is included in the SLA created for a new VM.

A common practice for assuring availability and fault tolerance of the services is
replication, where a VM is accompanied by a synchronized VM in a kept similar state.
Replication in virtual environments is approached by a large number of authors using
techniques like asynchronous checkpoint-recovery replication [5,4] or other more so-
phisticated techniques based on memory content similarity [7]. In our approach we will
assume that each instantiated VM is accompanied by a replica, kept synchronous with
the parent using one of the techniques enumerated above. The replica runs in parallel
the same processes as the cloned VM. When the VM becomes unavailable, the replica
should assure the continuity of the service. Of course that replication imposes extra
resource usage generating extra costs for the data center owner.

When the replica fails too, there is a high probability to have a service outage, dimin-
ishing the availability figure of the IaaS service. In this case, we can use the elasticity
characteristic of the cloud, migrating the machine to a healthy one, using the live mi-
gration process [17,1,12]. Live migration incurs allocating a new VM only on-demand
basis, and transferring all processed from the unhealthy VM to this new VM; all the
migration process being transparent to the cloud user. Live migration consumes the
available resources in the data center and incurs additional costs for the IaaS provider.

Autonomous Management of VM Failures Based on Fault Tree Analysis 3

Live migration concurs with other VM creation requests on the data center, and we will
model this to obtain the failure probability of the live migration process.

We assume that each VM, during its lifetime, generates events that can be used for
VM failure prediction.

To keep service availability at high rates and make the data center resource manage-
ment operations transparent to the cloud user, including replication and live migration,
in this paper we develop a fault tolerance model able to monitor the health state of the
running machines and to predict the failure of a VM. Based on this model, we can con-
struct a decision strategy about when to pro-actively transfer the control from a VM
to its replica or when to apply the live migration. For our modeling, we will use the
fault trees analysis, presented in the next subsection. Having in mind not to overload
the virtualization hypervisor or to require other centralized mechanism for running the
fault tolerance model, we apply fault tree analysis in decentralized way, such us that
each machine to be able to autonomously run the fault tolerance mechanisms.

2.2 Fault Tree Analysis

Fault tree analysis was introduced by the U.S. Nuclear Regulatory Commission as the
main instrument used in their reactor safety studies. Fault-tree models are part of an
analytical technique studying specified undesired states of systems and their systems
[9].

Basic fault tree analysis uses graphical tree representation of failure nodes of the
system connected together by AND / OR gates. Each node is the equivalent of a sub-
system and is characterized by the estimated probability of failure of the represented
system or subsystem. Each node of the system can be further decomposed using a fault
tree.

In our study we will use the analysis procedure of parallel subsystems - the AND
gate, depicted in figure 1.

Fig. 1: Fault tree representations for parallel two-component systems[9]

In our case of a parallel system, the whole system is considered crashed when all
subsystems that work in parallel are crashed. Having the fault probability for each sub-
system P (S1) and P (S2), we can compute the failure probability of general fault of the
parallel system: P (S) = P (S1 · S2) = P (S1) · P (S2).

4 Alexandru Butoi, Alexandru Stan, and Gheorghe Cosmin Silaghi

In terms of reliability (Q) and unreliability (R) at a time t we have [9]: Q(t) =∏n
i=1Qi(t) and R(t) = 1−Q(t)⇒ R(t) = 1−

∏n
i=1Qi(t), where Qi represents the

reliability of the ith subsystem.
In the context of virtualized environments, we will evaluate the health state of a

virtual machine based on the events triggered in the environment using fault trees. Crash
imminence will be assessed based on the health state of a VM and its replicas.

3 Approach

In this section we present our approach for fault tolerance analysis, based on the above-
mentioned fault trees, using concept of fault agents, described below.

3.1 Fault Agents

As presented in section 2.1, a VM can have two types of relations with other VMs
running in the datacenter, defined as follows: replication - between a virtual machine
and its clone and migration - between a virtual machine and its clone obtained by live
migration.

We equip each VM with a fault agent, capable of building the fault tree for the VM
according to the relations between that VM and others (replicas or migrated ones). In
order to have a bottom-up approach of the problem, the fault agent conceptually resides
in the virtual machine and take as input events raised by the hypervisor in the relation
with that VM.

The fault agent implements fault tree analysis principles to process the events de-
livered by the hypervisor and to predict the reliability of the associated virtual machine.
The fault agent acts proactively on the behalf of the VM, taking the decision of trans-
ferring the control to its replica or to start the live migration process. Having a virtual
machine vk and its replica rk, the fault agent computes the fault tree described in Fig. 2.

The fault tree presented in Fig. 2 has two types of fault nodes:

(1) the computation nodes are fault nodes which correspond to a running or possible
running (live migrated) virtual machines. Nvk represents the fault node of the vir-
tual machine vk,Nrk represents the fault node of its replica rk, andMrk is the fault
node of the on-demand future migrated virtual machine.

(2) the aggregation nodes or the decision nodes do not have real corresponding vir-
tual machines, but they aggregate the fault probabilities of the subsystems and are
important for the fault agent to take decisions. Rk represents the fault node of the
subsystem resulted from the replication relation of vk with rk and it is computed
from Nvk and Nrk . S represents the fail node of the whole system obtained out of
the replication and live migration relations; it is computed from Rk and Mrk .

Rk nodes are of great importance, as the fault agent residing on replicas will decide
when a live migration has to start, assessing when the replication process is unreliable.

Each node in the fault tree stores two failure probabilities at time t: tqi is the theo-
retical fault probability of the node and cqi is the computed fault probability of a node at
time instance ti. For each VM, the theoretical fault probability tq is initialized with the

Autonomous Management of VM Failures Based on Fault Tree Analysis 5

Fig. 2: Fault tree model of one replicated virtual machine

value of the maximum accepted fault rate, according to user-accepted QoS of that VM.
Computed cq indicators of the computation nodes are initialized with 0 and computed
from the events raised by the hypervisor in relation with the VM. Composite tq and cq
indicators of aggregation nodes are calculated in the fault tree according to AND gate
rules. Below, we fully specify the life cycle of each fault agent.

The fault agent life cycle has two phases:
1. The fault tree initialization phase takes place once, when the VM is started and

the fault agent is deployed. The fault tree is constructed using the model presented
above. In this phase the tq indicators are computed as follows:

1. tqk ofNvk , tqrk ofNrk and tqm ofMrk are initialized with the values of the natural
fault probabilities of the virtual machines (naturalQ); these values can be found in
SLA service availability specification.

2. tqr of Rk is computed as following: tqr = tqk · tqrk (AND gate output)
3. tqs of S is computed as following: tqs = tqr · tqm (AND gate output)

2. The reasoning phase: the fault agent captures events raised by the VMs or by
the hypervisor and updates the cq indicators with the fault probability induced by each
event. Each event indicates either the well-being of the system - describing the suc-
cessful completion of a VM process or it is an undesired event and brings in a fault
probability.

The computed probability of failure cq of each node of the tree is updated and
recalculated every time an event is raised by the VM. In this phase the cq indicators are
computed as presented in the next two subsections.

6 Alexandru Butoi, Alexandru Stan, and Gheorghe Cosmin Silaghi

Computation of cq for the VM nodes and replicas

1. If at time ti an error event Ei(p) is raised by vk, inducing a probability p for the
machine to crash:
(a) update the cq indicator of the computation node Nvk : cqki = cqki−1 + p
(b) recompute the cqri of the replication decision node Rk: cqri = cqki · cqrki

(c) recompute the cqs of the aggregation system node S: cqsi = cqri · cqmi

(d) announce all the agents of other VMs which are in direct relation with vk to
update their fault tree with the new values

2. If at time ti a non-error event NEi(p) is raised by vk, where p is the probability
that this event not to take place - thus leaving space for an error event:
(a) update cq indicator of the corresponding fault node: cqki = max(0, cqki−1−p)
(b) recompute cqri and cqs as explained at 1.
(c) announce all the agents of other VMs which are in direct relation with vk to

update their fault tree with the new values

Strictly positive cq indicates the unhealthy state of a VM. When a non-error event
is produced, the cq is decreased, and after several non-error events, we consider that the
virtual machine heals from an unreliable state to healthy one.

When a virtual machine raises an event and the corresponding fault node is updated,
the agent announces other agents deployed in other machines which are in direct rela-
tion with the current one: for example if vk updates its corresponding node, the replica
agent will be announced to update the corresponding node too in her internal fault tree.

Computation of cq indicator for the migration fault node Mrk . While theNvk ,Nrk
and Rk nodes are handled based on fault probabilities associated with each raised event
originating in the corresponding VMs, the fault probability cqmi of the live migration
node Mrk is computed according to the chance of the VM to migrate at a time ti, being
aware that the available resources to be provisioned during the live migration process
are limited and there can be other agents simultaneous claiming those resources at time
ti. Thus, cqmi

represents the probability of the VM not to be able to migrate at time ti
and is computed as described bellow.

Virtual machine vk can migrate only if it has enough resources for all four types
required. Given that pstoragefail(ti), pcpufail(ti), pramfail(ti), pbandfail(ti) represent
the failure probabilities due to lack of a given type of resources, the probability of vk
not being able to migrate due to insufficient resources (migration fault probability) at
time ti is:

pvk(ti) = pstoragefail(ti) · pcpufail(ti) · pramfail(ti) · pbandfail(ti). (1)

Now, we need to compute the values p(r)fail for each of the above mentioned
resources: storage, cpu, ram, bandwidth, where r is the requested stock of each resource
needed in the live migration process.

For each resource type required by vk, we compute the probability of not having
enough resources at time ti. We assume that at time ti there are TC concurrent requests
for the total RS(ti) stock of resource available at the data center at time ti.

Autonomous Management of VM Failures Based on Fault Tree Analysis 7

If NCMALR represents the number of claims requesting at least the stock r of
the resource and NCMLR represents the number of claims requesting less than the
stock r of resources, it gives that the probability of a successful migration requesting r
resources p(r)func is

p(r)func =
NCMLR

TC
(2)

and the probability of not being able to complete live migration because of the lack
of resources p(r)fail is

p(r)fail = 1− p(r)func =
NCMALR

TC
(3)

A resource claim is a j-subset of RS(ti). Total possible concurrent requests TC is
equal with the number of j-subsets on | RS(ti) | elements and is therefore given by
the binomial coefficient Cj

|RS(ti)|. Thus, the total number of possible resource claims
is equal to:

TC =

|RS(ti)|∑
j=1

Cj
|RS(ti)|

=

|RS(ti)|∑
j=0

Ck
|RS(ti)| −C0

|RS(ti)|

= (1 + 1)|RS(t)| −C0
|RS(ti)| = 2|RS(ti)| − 1

(4)

The total number of claimsNCMLR requesting less than r resources can be found
using dynamic programming, solving the subset sum problem for a maximum r re-
sources, using the recurrence below:

NCMLR(RS(ti), | RS(ti) |, r) =
NCMLR(RS(ti) \ {x|RS(ti)|}, | RS(ti) | −1, r)+
NCMLR(RS(ti) \ {x|RS(ti)|}, | RS(ti) | −1, r − x|RS(ti)|)

(5)

With this approach, we can compute the four failure probabilities pstoragefail(ti),
pcpufail(ti), pramfail(ti), pbandfail(ti).

The above heuristic computes only the probability of a VM not being able to mi-
grate due to insufficient amount of required resources at time t. There can be situations
when there are enough available resources to migrate but the live migration fails due
to specific migration error or crashes. For the completeness of the approach we need
to add another probability component presidual representing the probability of live mi-
gration process fault due to causes other than lack of resources. The probability of vk
not being able to migrate is the probability of not being able to migrate because of not
enough resources at time t and the live migration residual probability:

cqmi
(ti) = pstoragefail(ti) · pcpufail(ti) ·ramfail (ti) · pbandfail(ti) · presidual(ti) (6)

8 Alexandru Butoi, Alexandru Stan, and Gheorghe Cosmin Silaghi

3.2 Quantifying the Error Impact on Each Node

In our modeling, the pernicious effect of errors decays over time. Thus, a non-error
event or events occurring after an error event indicates that the VM recovered somehow
from the crash and the probability of failure decreases.

We considered three types of temporal error impact on the system: (1) punctual
impact; (2) stochastic linear decay impact; (3) stochastic exponential decay impact.
Below, we present the mathematical modeling for these sorts of decays.

Punctual Impact Punctual impact means that a non-error event following after an
error event totally heals the machine. Mathematically, decay intervenes as a Heaviside
step function E(terr) · (1−H[terr + 1]) and full decay instantaneously occurs at time
terr + 1. The differential equation of the process is dE

dt = E(terr) · (1− δ(terr + 1)).
Fig. 3 shows this sort of decay function.

Fig. 3: Punctual error impact on the system

Stochastic Linear Decay Impact The linear model uses a constant rate of decay, and
is the most simple decay function. It has the specific meaning of error impact decreasing
in arithmetical progression. The differential equation of the process is dEdt = −λd paired
with the initial condition E(terr) = Eterr , where λd is the linear decay rate. Full decay
intervenes after time terr +

Eterr

λd
. Fig. 4 shows this type of decaying impact.

Fig. 4: Linearly decaying error impact on the system

Autonomous Management of VM Failures Based on Fault Tree Analysis 9

We used a stochastic alternative of this equation of the following form: dEdt = −λd+
σ ·dw(t), where σ is the volatility around the linear decaying trend andw(t) is a Wiener
noise. The stochastic decaying process encounters an absorbing barrier at E = 0.

Stochastic Exponential Decay Impact The error impact is subject to exponential de-
cay which decreases at a rate proportional to the initial impact. The process can be
expressed by the differential equation dE

dt = −λdE, where E(t) is the error impact at
time t and λd is the exponential decay constant.

The solution to this equation is an exponential rate of change E(t) = Eterre
−λdt

t ≥ terr where Eterr = E(terr) is the initial error impact on the system at time t =
terr.

In this case, the error occurrence in the system will induce an infinite impulse re-
sponse with an impact decreasing exponentially, but never reaching zero and having
half-live original impact at time t1/2 = terr+

ln(2)
λd

. Fig. 5 illustrates an example of this
type of decaying impact.

Fig. 5: Exponentially decaying error impact on the system

We used a stochastic derivation of the exponential decay of the following form:
dE
dt = −λd ·E(t)+σ ·dw(t). The stochastic decaying process encounters an absorbing

barrier at E = 0.

We used one of the three types of decay functions presented above for computing
the update healing probability for each error event occurring at one computation node
followed by non-error events (see computation of cq for VM and replica nodes in sub-
section 3.1).

3.3 Proactive Decision Making Algorithm

The agent takes a decision to relocate the running processes from the VM to the replica
or to start live migration by comparing cq with tq using a threshold.

Given a threshold 0 < f < 1, the decision process at time ti for transferring the
control to replica or to migrate takes place as follows:

1. for node Nvk , if cqki

tqk
≥ f then the corresponding virtual machine vk is unreli-

able : transfer the control to its replica, rk, only if the replica is reliable: at node
Nrk ,

cqrki

tqrk
< f

10 Alexandru Butoi, Alexandru Stan, and Gheorghe Cosmin Silaghi

2. for the replication composite node Rk, if cqri
tqr

>= f , then both vk and rk became
unreliable : try to migrate the healthiest machine only if the migration process is
reliable: node Mrk :

cqmi

tqm
< f

3. for the root node S, if cqki

tqk
≥ f then the system is in an unreliable state

The possible decisions taken by the fault agent are:

1. REPLICATED - the control has to be transferred to replica- taken upon node Rk.
2. MIGRATED - the VM and its replica are unreliable and the migration is needed - taken upon

node Rk.
3. OK-when a computation node is in a reliable state
4. REPLICATED to OK / MIGRATED to OK - when a VM is becoming reliable again and can

be reversed from its previous state (replicated/migrated) to its normal state.
5. REPLICATION FAIL / MIGRATION FAIL - when the replication or migration process is

unreliable too.
6. UNRELIABLE - a computation node is declared unreliable

4 Experimental Results

Our aim was to evaluate the strategy of migration as a secondary plan for QoS as-
surance, when the VM and it’s replica are in a fault state. We study the evolution of
computed fault probability of Rk node which is used to take the decision of migration.

We simulated a virtual machine together with its replica requiring 2 CPUs, 2GB
of RAM, 100MB/S of bandwidth and 10 GB of storage, and a maximum accepted
failure rate of 0.1% with a threshold f = cqki

tqk
= 0.8(80%), varying the number of

errors raised by the VM. Using traces generated from real Xen virtualization logs, we
studied the behavior of the fault agent for the cases when the migration is needed in the
above mentioned error impact scenarios: punctual error impact, linear decay impact and
exponential decay impact. The XEN hypervisor was hosting similar VM configurations,
having a medium load/hour. It produces three types of log records labeled as: ERROR,
DEBUG and INFO. For our experimental setup, we used only the ERROR and INFO
labeled log records while the DEBUG records targets the development process of XEN
engine.

4.1 Error Samples Generated from Traces

The event samples for simulation runs were obtained by parsing each record of the XEN
log file obtaining a specific event in the initial sample of VM events. If the log record
was labeled as an ERROR, an event error was generated, while another was labeled as
INFO a non-error event was generated. For each new created event a simple probability
was computed:

1. if the log trace was labeled as ERROR the probability is calculated as
1+number of ERRORS raised before current error

total number of events ;
2. if the log trace was labeled as INFO the associated probability is calculated as

1+number of INFO raised before current error
total number of events ;

Autonomous Management of VM Failures Based on Fault Tree Analysis 11

After parsing all records we obtained a small sample of error and non-error events
on which we applied three bootstrapping procedures: bootstrap with no decay effect -
producing event queues in which each error has punctual impact, bootstrap with linear
decay effect-producing an event queue in which every error has a linear decay impact
and bootstrap with exponential decay effect - having as output an event queue in which
error events have the effect of exponential decay.Every bootstrap procedure generates a
number of event queues from the initial sample using the bootstrap procedures. In our
simulations, a linear decay rate of 0.5 and an exponential decay rate of 0.8 where used,
specifying the decreasing effect of the decay process.

For a more representative sample of error events, we performed bootstrapping on
the event traces pool in order to evaluate our model near the limits and obtaining a larger
event sample while preserving the structural characteristics of the initial sample.After
each sample was generated using the bootstrap method we computed some descriptive
indicators and histograms of the error events contained in the sample.

(a) Homogeneous Poisson
process sample (Mean:19.88;
Std.Dev:4.02; Skewness:0.37)

(b) Punctual error impact sam-
ple (Mean:37.60; StdDev:18.19;
Skewness:0.79)

On the x-asis we plot the number of error events generated in each event queue by
bootstrap routine. On y-axis we plot the frequencies of error occurrences in event queue
obtaining the histograms of the error events in the samples. The error distributions are
close to the normal distribution indicating that the bootstrap procedures generates robust
and representative event samples.

4.2 The Different Error Impact Models in Assuring QoS

Previous simulations using randomly generated events from a homogeneous Poisson
process showed that for an error rate below 13.41% per VM the replication cq indicator
of fault nodeRk(the replication node) is below the tq and migration is not needed.When
the error rate is higher than 13.41% per Vm, migration is needed as we can see in
Fig. 6, when cq value peeks very close to tq value. Next, in every case of error decays,
we analyzed the evolution of cq indicator of the replication node Rk in relation with

12 Alexandru Butoi, Alexandru Stan, and Gheorghe Cosmin Silaghi

(c) Linear decay error im-
pact sample (Mean:53.89; Std-
Dev:19.25; Skewness:0.002)

(d) Exponential decay error im-
pact sample(Mean:19.95; Std-
Dev:6.17; Skewness:0.69)

Fig. 5: Error distribution in the different scenario event samples

Fig. 6: Computed probability (cq) evolution on replication node for 13.41% errors from Poisson
homogeneous process

the maximum accepted failure rate of 0.001 (99.9 % of availability of the service).
Moreover these observations where made after 3000 VM events when migration was
needed. Bellow this value no migration was needed.
Figure 7,8 and 9 present a comparative view of the evolution of cq indicator calculated
for the replication node in each 3 event samples scenarios. The data used for these
representations was considered from the moment when the fault agent is starting to take
the decision for live migration due to VM and replica unreliability.

When the level of 0.001 naturalQ is passed by the cq indicators live migration is
required. Observing the frequency and amplitude of peeks correlated with the average
percentage of live migration in each case, we can state that in the linear decay error
impact scenario we have the smallest number of migrations, followed by the punctual
decay error scenario and exponential decay error impact when live migration rate is the
highest.Moreover the cq values have the natural tendency to return back to the imposed
threshold of 0.001. This can be explained due to the compensation power of the non-
error events.

Autonomous Management of VM Failures Based on Fault Tree Analysis 13

Fig. 7: Computed probability (cq) evolution on replication node in punctual error impact scenario
[Average: MIGRATED-7%; MIGRATED-OK-0.2%]

Fig. 8: Computed probability (cq) evolution on replication node in linear decay error impact
[Average: MIGRATED-6.36%); MIGRATED-OK-0.23%]

5 Related work

Reliable cloud computing infrastructures require specially selected and optimized con-
ditions for which the hardware equipment are not primarily conceived [6,20]. The com-
plexity and the heterogeneity of hardware infrastructures can make cloud-based systems
prone to significant amounts of failures and functioning incidents [11]. In failure-prone
environments, fault tolerance is playing an essential part when assuring high levels of
reliability and availability of the services [15]. To tolerate failures, these environments
are characterized by systematic resource replication. By replicating individual virtual
machines, fault tolerance and resource costs of applications can be improved [19].

Fig. 9: Computed probability (cq) evolution on replication node in exponential decay error im-
pact [Average: MIGRATED-10.3%); MIGRATED-OK-0.13%]

14 Alexandru Butoi, Alexandru Stan, and Gheorghe Cosmin Silaghi

There are many symbolic representations used to describe the ability of a distributed
system to cope with failures. In this paper, we describe the failure behaviour of a fault
tolerant system through fault tree models [10,2], which are well fitted to present the
different levels of errors specific to cloud computing infrastructures [8,18].

System virtualization technology is at the foundation of the cloud computing. Through
virtualization, extra hosts can be easily added or removed at any time after the comput-
ing infrastructure has been set up. Thus, cloud infrastructure can start at initial modest
scales, and then scale up progressively, rendering system services in a flexible and scal-
able way [16]. Virtualization [13] is highly beneficial since virtual machine instances
level up computing resources stemming from potentially hundreds of thousands of com-
modity servers with heterogeneous CPU, memory and storage characteristics. When the
replicas are located at physical hosts with different geographical location, the failures
incidence on different replicas can become increasingly independent and the system
much more reliable [3,21].

Application deployment on virtual machines instances within clouds bring new risks
as failures in data centres are normally outside the clouds clients’ control. Traditional
approaches in assuring fault tolerance require the users to have very good knowledge
of the base mechanisms. Cloud computing, on the other hand, through the abstrac-
tion layers, make transparent the architectural details for their clients. This changes the
paradigm in approaching fault tolerance, as the cloud computing platforms need to ad-
dress clients’ reliability and availability concerns. Our approach is employing Xen [14]
as a virtualization system but it is not constrained to it.

6 Conclusions

The paper presents a novel approach to autonomous management of virtual machine
faults in Infrastructure as a Service cloud model, by deploying fault agents which
conceptually reside in each virtual machine. Having the objective of avoiding QoS
breaches, using fault tree analysis, fault agents can decide whether the virtual machine
is reliable. To preserve the availability rate of the VMs, we use a strategy which com-
bines active machine replication and live migration. When replication strategy fails, the
migration process of virtual machine is used in order to assure continuity of the service.

We evaluated our fault tolerance model using a practical approach by generating
virtual machine events traces from production Xen engine logs. We tested our model
for robustness in a stress evaluation setup by using bootstrapping. Considering three
sorts of error impact behaviors: punctual impact, linear decay and exponential decay,
we showed that after an error event is raised, several consecutive non-error events can
have the power to establish the reliable status of a virtual machine. Further work will
focus on autonomous establishing when to apply each impact behavior and which one
suits best for the IaaS setups.

Acknowledgement

This work was co-financed from the European Social Fund through Sectoral Opera-
tional Programme Human Resources Development 2007-2013, project number POS-

Autonomous Management of VM Failures Based on Fault Tree Analysis 15

DRU/159/1.5/S/134197 ”Performance and excellence in doctoral and postdoctoral re-
search in Romanian economics science domain”. G.C. Silaghi acknowledges support
from UEFISCDI under project JustASR - PN-II-PT-PCCA-2013-4-1644.

References

1. Atif, M., Strazdins, P.: Adaptive parallel application resource remapping through the live
migration of virtual machines. Future Generation Computer Systems 37, 148–161 (2014)

2. Bobbio, A., Portinale, L., Minichino, M., Ciancamerla, E.: Improving the analysis of de-
pendable systems by mapping fault trees into bayesian networks. Reliability Engineering &
System Safety 71(3), 249 – 260 (2001)

3. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.: Live
migration of virtual machines. In: Proceedings of the 2Nd Conference on Symposium on
Networked Systems Design & Implementation - Volume 2. pp. 273–286. NSDI’05, USENIX
Association (2005)

4. Colesa, A., Mihai, B.: An adaptive virtual machine replication algorithm for highly-available
services. In: Computer Science and Information Systems (FedCSIS), 2011 Federated Con-
ference on. pp. 941–948. IEEE (2011)

5. Cully, B., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N., Warfield, A.: Remus:
High availability via asynchronous virtual machine replication. In: Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation. pp. 161–174. San
Francisco (2008)

6. Feller, E., Rilling, L., Morin, C.: Snooze: A scalable and autonomic virtual machine man-
agement framework for private clouds. In: 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid). pp. 482–489. IEEE Press (May 2012)

7. Gerofi, B., Vass, Z., Ishikawa, Y.: Utilizing memory content similarity for improving the
performance of replicated virtual machines. In: Utility and Cloud Computing (UCC), 2011
Fourth IEEE International Conference on. pp. 73–80. IEEE (2011)

8. Guerraoui, R., Yabandeh, M.: Independent faults in the cloud. In: Proceedings of the 4th
International Workshop on Large Scale Distributed Systems and Middleware. pp. 12–17.
LADIS ’10, ACM Press (2010)

9. Haimes, Y.: Risk Modeling, Assessment, and Management. Wiley (2005)
10. Jhawar, R., Piuri, V.: Fault tolerance management in iaas clouds. In: IEEE First AESS Euro-

pean Conference on Satellite Telecommunications (ESTEL). pp. 1–6. IEEE Press (2012)
11. Jhawar, R., Piuri, V.: Fault tolerance and resilience in cloud computing environments. In:

Vacca, J.R. (ed.) Cyber Security and IT Infrastructure Protection, pp. 1 – 28. Syngress (2014)
12. Jin, H., Deng, L., Wu, S., Shi, X., Chen, H., Pan, X.: Mecom: Live migration of virtual

machines by adaptively compressing memory pages. Future Generation Computer Systems
38, 23–35 (2014)

13. Kim, D.S., Machida, F., Trivedi, K.S.: Availability modeling and analysis of a virtualized
system. In: Proceedings of the 2009 15th IEEE Pacific Rim International Symposium on
Dependable Computing. pp. 365–371. PRDC ’09, IEEE Computer Society (2009)

14. Nagarajan, A.B., Mueller, F., Engelmann, C., Scott, S.L.: Proactive fault tolerance for hpc
with xen virtualization. In: Proceedings of the 21st Annual International Conference on Su-
percomputing. pp. 23–32. ICS ’07, ACM Press (2007)

15. Nicolae, B., Cappello, F.: BlobCR: Virtual disk based checkpoint-restart for HPC applica-
tions on IaaS clouds . Journal of Parallel and Distributed Computing 73(5), 698 – 711 (2013)

16. Sampaio, A.M., Barbosa, J.G.: Towards high-available and energy-efficient virtual comput-
ing environments in the cloud. Future Generation Computer Systems 40, 30–43 (2014)

16 Alexandru Butoi, Alexandru Stan, and Gheorghe Cosmin Silaghi

17. Travostino, F., Daspit, P., Gommans, L., Jog, C., De Laat, C., Mambretti, J., Monga, I.,
Van Oudenaarde, B., Raghunath, S., Yonghui Wang, P.: Seamless live migration of virtual
machines over the man/wan. Future Generation Computer Systems 22(8), 901–907 (2006)

18. Undheim, A., Chilwan, A., Heegaard, P.: Differentiated availability in cloud computing slas.
In: Proceedings of the 2011 IEEE/ACM 12th International Conference on Grid Computing.
pp. 129–136. GRID ’11, IEEE Computer Society (2011)

19. Vallee, G., Engelmann, C., Tikotekar, A., Naughton, T., Charoenpornwattana, K., Leangsuk-
sun, C., Scott, S.: A framework for proactive fault tolerance. In: Third International Confer-
ence on Availability, Reliability and Security, (ARES). pp. 659–664. IEEE Press (2008)

20. Vishwanath, K.V., Nagappan, N.: Characterizing cloud computing hardware reliability. In:
Proceedings of the 1st ACM symposium on Cloud computing. pp. 193–204. ACM Press
(2010)

21. Wang, S.S., Wang, S.C.: The consensus problem with dual failure nodes in a cloud computing
environment. Information Sciences 279, 213 – 228 (2014)

	Autonomous Management of Virtual Machine Failures in IaaS Using Fault Tree Analysis

