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Abstract. Streaming Applications are complex systems where the ex-
istence of concurrency, transmission of data and sharing of resources are
essential characteristics. When these applications are run over Cloud in-
frastructures, the execution may incur an economical cost, and it can be
therefore important to conduct an analysis prior to any execution. Such
an analysis can explore how economic cost is interrelated to performance
and functionality. In this paper, a methodology for the construction of
this kind of applications is proposed based on the intensive use of formal
models. Petri Nets are the formalism considered here for capturing the
active entities of the system (processes), the flow of data between the
processes and the shared resources for which they are competing. For
the construction of a model aimed at studying different aspects of the
system and for decision-taking design, an abstraction process of the sys-
tem at different levels of detail is needed. This leads to several system
models representing facets from the functional level to the operational
level. Petri Net models are used to obtain qualitative information of the
streaming application, but their enrichment with time and cost infor-
mation provides with analysis on performance and economic behaviours
under different scenarios.

Keywords: Economical Cost of Clouds, Petri Nets, Streaming Appli-
cation.

1 Introduction

Over the last years, with the advances and development in sensor networks &
technologies, there has been a growing number of sensors that are monitoring
physical or environmental conditions, such as temperature, humidity, wind, etc.
These sensors transmit their measurements continuously, forming a sequence of
data elements known as a data stream. A number of applications exploit these
data streams with different purposes –ranging from military applications moni-
toring battlefield to industrial and consumer applications, such as applications
that help create Smart Cities and Smart Buildings, or applications for health
care monitoring, and natural disaster prevention. Moreover, these applications



often have to deal with significants amounts of data that need to be processed
continuously in (near) real-time, leading to the need for distributed computa-
tional infrastructures.

Hence, in such a context, the complexity of streaming applications arises from
the confluence of concurrency, transmission of data and the use of distributed
resources. From a conceptual design perspective, a streaming application can be
seen a set of Computational Processes (CPs) that receive data continuously, and
the data dependencies among them. Besides, a CP may require the synchroniza-
tion of several input streams to conduct the computation. In order to execute
such applications, CPs and their data transmissions involved require resources,
including computational machines, network and storage. In the activity of map-
ping, resource management is involved, and its effectiveness can be measured
from various system properties [15], namely economical cost, performance, and
functionality. Nevertheless, depending on the target infrastructure the policies
and the mechanisms involved for such an activity may be different. For instance,
unlike in traditional distributed systems, load balancing in a Cloud infrastruc-
ture is not about evenly distributed the load among servers, but in minimizing
the cost of providing the service. Hence, the goal is to adapt the computational
power to the actual workload. It would be therefore important to conduct an
analysis prior to any execution of a given workflow, analysis that must explore
minimal and maximal boundaries of the economical cost of the execution of a
streaming specification, in relationship with its performance and its workload.

In this paper, we propose a Petri net-based, model-driven and stepwise re-
finement methodology for streaming applications over Clouds. The central role
in this methodology is assigned to a set of Petri Net models describing the
behavior of the system including timing and cost information. The goal is to
use these models in an intensive way before the deployment of the application
in order to understand the system, and to obtain properties of the different
solutions adopted. In some cases, the observations may induce or recommend
changes into the application with the purpose of modifying parts of the design
and assure agreed specifications. The consideration of Petri Nets is based on
the natural descriptive power for the concurrency, but also for the availability
of analytic tools coming from the domain of Mathematical Programming and
Graph Theory. These tools are based on a structural analysis that support the
reasoning on properties without the construction of the state space –which for
such a class of systems is prohibitive.

Additionally, Petri Nets support the use of formal verification techniques such
as standard Model Checking Techniques for the verification of qualitative prop-
erties. These techniques can be based on the construction of the state space of a
streaming application (the complete set of reachable markings of the net by the
occurrence of transitions). Then, any property to be verified can be expressed in
logic terms. In case the property is satisfied, the answer of the Model Checker is
just a confirmation of this, but if the property is false, then the model checker
gives counterexamples that proof that the property does not hold. The main
advantage is that usual properties like deadlock-freeness, liveness, home space,



maximal sets of concurrently fireable transitions, mutual exclusions, etc. can be
decided. In practice, the applicability of the approach is limited to bounded sys-
tems with a finite state space and with a moderate size. Conclusions hold only
for the initial marking being considered. Our models for streaming application
can be exploited to understand the most appropriate approach for solving the
problem: strategy(ies) for decomposing the problem into processes, communica-
tion needs and resources required for satisfying functional and non-functional
requirements. Taking into account that the model is a Petri Net, we can con-
sider it as an executable specification. Therefore, it can be simulated in order to
reach this understanding or simply to obtain performance or economic bound-
aries, which can be obtained by enriching it with time and cost information.
In other words, simulation is an analysis technique. It may be useful to dis-
cover some (un)desirable behaviors, but in general it does not allow to proof the
(in)existence of some properties.

The other way to exploit the models is through the extraction of structural
information from the net. Structural information allows to obtain properties that
are guaranteed mainly for the net structure, i.e. the places, the transitions and
the token flow relation represented by means of the arcs. On this regard, a classi-
cal example is the information obtained from the marking invariants guaranteed
by the structure of net (weighted sums of the contents of tokens of some places
of the net that remain constant for any reachable state and, in particular, for
the initial marking of the net). Invariants or other structural objects of the net
give valuable information on the net behavior that can be used to detect, for
example, a sequential execution of activities that reduces the net concurrency
–i.e. because there are not enough tokens to fire transitions simultaneously. Let
us suppose, for example, that we have a marking invariant that says that the
sum of the contents of tokens of a set of places is equal to 1 for all reachable
states. This means that in the set of places contained in the invariant one and
only one of the places can contain exactly one token. Therefore, all the places
are in mutual exclusion, moreover, all output transitions of these places are in
mutual exclusion (they cannot be never concurrently fired). With this informa-
tion a designer can decide to increase the contents of tokens of these invariants
to increase the degree of concurrency, or he/she can modify the structure of the
net in order to remove all these limiting invariants for the concurrency. From
the above comments, we can say that a first phase for exploiting the models is
to determine the correction of the adopted solution, verifying all the good prop-
erties expected are satisfied. As a second step, when a property is not satisfied,
the model can be used for detecting the causes of the problems or anomalies in
it that prevent it to behave as expected. Then, the understanding of the causes
can lead to a modification of the model.

In the case of this paper, Petri Nets must capture the active entities of the
system CPs, the flow of data between the processes (Data Transmission Pro-
cesses) and the shared resources. The final Petri Net models can be exploited
as a universal specification to be used with multiple platforms and languages.
Taking into account the complexity of the involved elements in the system, the



proposed approach decomposes the construction of the model in several stages.
This leads to several system models representing facets from the functional level
to the operational level. Petri Net models are used to obtain qualitative infor-
mation of the streaming application, but their enrichment with time and cost
information provides with analysis on performance and economic behaviours
under different scenarios.

We validate our methodology through the wavefront algorithm, a Matrix-
Vector multiplication in streaming fashion [13, 12]. First, we create a Funcional
model describing the behavior of computations and data transmissions. After
that we apply structural analysis techniques to verify that the functional be-
havior of our model was the expected: the wavefronts are propagated through
the array in an orderly way. In order to verify some quantitative properties (the
throughput of transitions) we add a timing interpretation to some transitions of
the net, from which we can derive the economic cost. The reminding of this paper
is structured as follows. In Section 2, related work is briefly discussed. In Sec-
tion 3, our methodology is proposed. The Matrix-Vector multiplication example
is studied in Section 4, and finally the conclusions are given in Section 5.

2 Related Work

Due to importance of processing data generated in a stream fashion, well-known
workflow systems such as Kepler [19, 10], Triana [9], or JOpera [5] have already
incorporated data streaming workflow patterns to be used by users in their
workflow specifications. The idea is that a sequence of more than one task is
applied sequentially to a data stream [20]. In general terms in pipelined work-
flows, performance is typically measured in terms of throughput, and therefore
the throughput is conditioned by the slowest task. For such a reason, it is impor-
tant that all the tasks execute in the same time, which is challenging due to the
variability and heterogeneity of computational resources as well as the programs
that execute the tasks. Thus, task merging and workflow transformation is es-
sential prior to mapping the tasks onto distributed resources in order to achieve
the minimal variation in execution time of tasks. We believe that our proposal
in this paper can help analyze the influence of the different design decisions in
the task-mapping process on workflow throughput and other properties such as
economical cost. Other proposals like [23] utilised Petri Nets for predicting the
execution time (makespan) of Taverna workflows at a functional level.

Regarding the problem of workflow mapping of tasks and task clustering has
been studied deeply in the Pegasus workflow system [14] for workflow DAGs.
In particular, in [8], the authors highlight the problems that arise with current
task clustering techniques as they are based on over simplified workflow models.
They investigate the causes and propose a number of task balancing methods
to address these imbalance problems. To the best of our knowledge, there is
no analogous work for streaming workflows. Our model can be useful for sys-
tem analysis, but at this stage is intended for human assistance rather than for
autonomic system



On the other hand, stream processing frameworks such as Yahoo’s S4 [18],
or IBM InfoSphere Streams [4] provide streaming programming abstractions to
build and deploy tasks as distributed applications at scale for commodity clusters
and clouds. Nevertheless, even that these systems support high input data rates,
they do not consider variable input rates, which is our focus in this paper.

Additionally, the work in [21, 22, 1] is focused on designing a system architec-
ture that processes data streams and exploits autonomic computing principles
for resource management in an elastic infrastructure. It consists of a sequence of
nodes, where each node has multiple data buffers and computational resources –
whose numbers can be adjusted in an elastic way. They utilize the token bucket
model for regulating, on a per stream basis.

In the Performance Engineering community, traditionally, three methods
have been proposed, sometimes in complementary ways, to reveal how a system
performs: direct measurement, simulation and analytical techniques. Although
all of them allow system engineers to undertake testing before development, and
at a lower cost, both simulation and analytical methods share the goal of creating
a performance model of the system / device that accurately describes its load
and duration of the activities involved. Performance models are often described
in some formalisms including queuing network models [16], stochastic process
algebra [3] or Petri nets [17] that provide the required analysis and simulation
capabilities. A great number of these studies try to derive Petri net performance
models from UML diagrams [2] and to compute performance metrics such as
response time. Our emphasis in here is to exploit the inherent nature of Petri
Nets for modelling concurrency, which serves

3 Model Construction for the Economical Analysis

In the next subsections, we introduce the basic principles for the modular con-
struction of the Petri Net models for our proposal. After that, we introduce
different interpretations in the models in order to analyze properties related to
the qualitative behavior of the system, the performance of the application or the
economical costs of the deployment and execution.

3.1 Modular construction of the functional Petri Net model of the
streaming application

The construction of the functional model is based on the identification of the
basic modules that compose an application of this class. These modules are the
Computational Processes (CPs) and the Data Transmission Processes (DTPs).
CPs accomplish functional operations and transformations on data, and DTPs
allow data dependencies to be conducted among CPs. Both of CPs and DTPs
need resources to accomplish the corresponding operation, and these resources
also appear in the model, but at a conceptual, and generic way. Later in subse-
quent model refinements, specific resource constraints of different computational
infrastructures will be added, such as limitations in parallelism, capacity, eco-
nomic cost, etc.



– Characterization of a CP. A CP can be viewed as a sequence of oper-
ations to be applied to a set of data elements coming from different input
data streams, a type of elementary computational task of the application. We
assume a CP consists of multiple instances, Computational Threads (CT),
that are executed concurrently. A CP is modeled as a Petri Net, N , and
a CT as a token that moves through N . The places (partial states) of N
are related to the different operations (either transformations, handling or
assembly/disassembly operations) to be carried out by the thread. There ex-
ists a special place named Idle representing the inactive state of the threads
and its initial marking is the maximum number of supported threads exe-
cuting simultaneously this CP. The transitions of N allow a CT to progress
towards its final state representing the end of the computation for the input
data elements, the production of the output data elements and the restart-
ing the thread for the processing of the next data elements on the stream. A
CP has distinguished input points (output transitions of the Idle place) of
data elements from the input streams and output points (input transitions
of the Idle place) of data elements of the output streams. The execution of a
CP is achieved by the execution of a computation path, and several of them
can exist in the same CP. A computation path is a sequence of transitions
fireable in N , whose occurrence represents the obtention of a computed data
record.
In Figure 1.a, a CP with two sequential states is represented. A token in
the place Operation1 or Operation2 represents a thread executing the code
corresponding to the operation 1 or 2, respectively, required by the computa-
tional task modeled by means of this CP. A thread executes these operations
sequentially following the firing sequence: (1) Input Data Stream represent-
ing the acquisition of the data records from the input stream to realize
the computational task; (2) Change representing the end of the operation
1 and the beginning of the operation 2; (3) Output Data Stream represent-
ing the delivery of the data records obtained after the computation to the
output stream. The model presented in Figure 1.a is untimed. The addition
of timed information to a CP is introduced by the addition of a sequence
place-transition-place in parallel with a process place representing an oper-
ation of the computational task that consumes time. The transition added
is labeled with time information representing the duration of the computa-
tional operation. In Figure 1.b, the CP from Figure 1.a is represented by
assigning time1 and time2 units of time to the execution of the operations
1 and 2, respectively, according to the previously announced construction
for the introduction of timing in the model. Observe that all transitions of
Figure 1.a are immediate that is, do not consume time.

– Characterization of the Data Transmission Processes. CP can trans-
mit data elements to other CP in the form of a stream sent by means of a
physical / virtual device such as a FIFO queue implemented in memory or
a communication channel in a communication network. That transmission
behavior is captured by a Data Transmission Process DTP. A data element
to be transmitted is modeled as token that moves through a Petri Net, N ,



Fig. 1. A Computational Process with Resources composed by 2 sequential states each
one requiring a different type of resoource. a) Untimed model; b) Timed model assigning
timei units of time to the execution of the operationi.

representing an Elementary DTP with capacity for a single data record. The
places of N are related to the states in which a data element can be in the
transmission device. The transitions of N allow a data record to progress
from the source to the destination. The construction of a transmission de-
vice for a stream with a capacity for k data elements sequentially ordered
requires of the concatenation of k of these elementary DTPs. The model in
Figure 2.a is untimed and firing sequence of transitions Begin Transmission
and End Transmission represents the movement of a single data element
of a stream from the source (the final transition of any kind of Process) to
a destination (the initial transition of any kind of Process). In Figure 2.b,
the DTP of Figure 2.a is represented by assigning time1 units of time to
the transmission of a data element (according to the previously announced
construction for the introduction of timing in the model).

Fig. 2. A Data Transmission Process with capacity for a single data record. a) Untimed
model; b) Timed model

– Incorporation of Resources to each Computational and Data Trans-
mission Process. We consider any hardware/software element part of the
execution environment (i.e. a processor, a buffer, a server, a communication
channel, etc.) as a resource with a given capacity. In the case of a buffer,
its capacity can be the number of positions to allocate elements, a proces-



sor may have a number of cores that can be considered as its capacity, etc.
Moreover, in the execution environment, there exist several resource types
and for each of them, a number of identical instances can be available, rep-
resenting either the number of available copies of the resource to be used
(or its capacity). In all cases, the considered resources are conservative, i.e.
there is no resource leakage. On the other hand, each state of a CP, for its
corresponding processing step, requires a (multi-)set of resources (including
the buffering capacity to hold the thread itself). In our model, a resource
type is represented by means of a place whose initial marking represents ei-
ther the number of available copies of the resource or its capacity. A resource
place has input (output) arcs to (from) those transitions of a CP that moves
a Thread to (from) a state that requires (was using) a number of copies of
this resource type. In the case of DTPs, resource places represent the ca-
pacity of the storage device for transmission. The CP of Figure 1.a requires
two different types of resources that are modeled by means of the places
Resource1 and Resource2. Observe that the CP requires a copy of Resource1
to realize the operation 1 and a copy of Resource2 to realize the operation 2.
In the DTP of the Figure 2.a the resource place is the place named Capacity
that represents the size of the storage in the transmission device measured
in number of data records, in the figure is equal to one (the initial marking
of the place Capacity).

– Construction of the global model by composition of the Modules
with resources. In order to obtain the global model of the Streaming appli-
cation, a number of CPs with their corresponding DTPs (accomplishing the
data dependencies among them) must be composed. Besides, the resources
needed must also be considered at this step. The composition is based on
the fusion of the resource places representing the same resource type in the
different Modules. The initial marking of the resources, after the fusion, nor-
mally is computed as the maximum of the initial markings of the instances
that have been merged. The other composition operation is the fusion of a
transition representing the production of data records of an output stream in
a module with the transition representing the consumption of data records of
an input stream belonging to a different module. Observe that it is possible
to connect directly two CP without intermediate DTPs, one of the processes
acts as producer of data records and the other as consumer of data records
but without any intermediate buffer.

3.2 Modular construction of the operational Petri Net model of the
streaming application

The functional Petri Net model is derived from a specific algorithm that actu-
ally processes a number of given data streams. As already seen, it consists of a
composition of computational tasks and the data dependencies among them. In
consequence, a minimal number of constraints coming from the final execution
environment can be taken into account and, in many cases, the functional model



is constructed under a number of hypothesis that may not hold when target-
ing a specific infrastructure – i.e. the resources required in order to reach the
maximum degree of parallelism inherent in the model will not be available, or
in case there are resources available, but the economic cost of its usage exceeds
the budget, etc. Therefore, refining the functional model with the operational
submodel aims at introducing specific resource constraints that may alter either
economic cost, performance or even functionality. The alteration of the expected
and observed behavior at the functional model may even induce changes into the
functional model in order to better target a particular execution environment.
In other words, the reason for the operational submodel is to consider explicitly
those actual characteristics of a final execution environment, or to compare the
response of the application under different deployment scenarios. In this section,
we refine the Functional Petri Net model according to the characteristics of the
execution environment. Nevertheless, the list of possible constraints imposed by
the operational level is very large for the space in this paper. Hence, the follow-
ing is an illustration on how the operational Petri Net model can be constructed
from the Functional Petri Net model in two cases of relevance.

The first one corresponds to the case in which the functional Petri Net model
has several DTPs that they were initially independent, but finally in the opera-
tional model they must be merged together within the same low-level DTP. The
actual refinement procedure is depicted in Figure 3. There, three independent
DTPs, P1, P2 and P3, are displayed that were already present in the Functional
Petri Net Model. Nevertheless, the design decision to be taken is that the three
Processes must share the same Low-Level Data Transmission Process of capacity
2. The refinement of the model requires the splitting of each place si of a DTP
Pi in 2 places: (1) si1 represents the request of transmission to the low level;
(2) si2 represents the end of the transmission. These two places are connected
with a low-level DTP of capacity two, as depicted in the figure. Observe that in
order to recognize the process requesting the transmission, in the low-level DTP
a Polling Algorithm to serve the requests has been implemented that is equal
to the Polling Algorithm to send the acknowledgements to High-Level DTPs.
The other aspect to take into account in the refinement activity is that in case
of having timing information for the processes P1, P2 or P3, this information
must be removed before the actual refinement; since, after the refinement the
original information, it has no significance. The reason for this is that in the
refined model the consumption of time is in the Low-Level DTP.

Another case arises when several CPs of the Functional Petri Net Model,
which use resources types in isolation, must share the resources between all
CPs. This provokes the rise of competitive relationships. A typical scenario for
this transformation appears when the number of CPs is higher than the number
of processors and the actual parallelism is limited.

3.3 Exploiting Petri Net models for the economical analysis

A first phase for exploiting the models is to determine the correction of the
adopted solution, verifying all the good properties expected are satisfied. As a



Fig. 3. Refinement of the Functional Petri Net model to take into account the opera-
tional data transmission process that must be shared for three functional data trans-
mission processes

second step, when a property is not satisfied, the model can be used for detect-
ing the causes of the problems or anomalies in it that prevent it to behave as
expected. Then, the understanding of the causes can lead to a modification of
the model.

Finally, the addition of performance-oriented interpretations to the model
allows us to compute measurements such as throughput, utilization rates, queue
lengths, etc., from which it is possible to determine the time consumed in a
particular computation or the resources that have been involved. Both the time
consumed and the number of resources involved can be utilised to evaluate the
economic cost. The kind of performance measurements that are required to be
computed and how they must be exploited for an economic analysis depends on
the semantics of the elements in the model and its connection to the real system
(streaming application). In the next section we discuss an example of this.

4 Case Study: Wavefront Algorithm for Matrix-Vector
Multiplication in streaming

In order to illustrate our methodology, we are making use of the Matrix-Vector
Multiplication problem in streaming fashion, in particular, the Wavefront Al-
gorithm [12], which represents a simple solution for large arrays. Due to space
limitations, we are focused on Functional analysis, and no particular target in-
frastructure for the operational analysis is considered here. Let us examine how
an algorithm from Linear Algebra can be executed on a square, orthogonal 3×3
wavefront array (Figure 4).
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Fig. 4. Wavefront processing of Z(k) = Y (k) + A ·X(k), k = 1, 2, ....

Let A = (aij) be a 3 × 3 matrix, and let X(k) = (x
(k)
i ), Y (k) = (y

(k)
i ) and

Z(k) = Y (k) + A · X(k) = (z
(k)
i ) be 3 × 1 matrices for k = 1, 2, 3. Initially, the

elements of A are stored in the array of processors (aij in processor Pij). The

elements x
(k)
i , for k = 1, 2, 3 are stored from data streams on the top of the

i-th column of processors. The elements y
(k)
i , for k = 1, 2, 3 are stored from

data streams to the left of the i-th row of processors. The computational process

starts with processor P11, where y
(k)
1 + a11x

(k)
1 is computed. The appropriate

data is then propagated to the neighbour processors P12 (the result of P11) and

P21 (the input data on the top of P11, x
(k)
1 ), which execute their respective (sim-

ilar) operations. The next front of activity will be at processors P31, P22 and

P13. At the end of this step, P13 outputs z
(1)
1 . A computation wavefront that

travels down the processor array appears. Once the wavefront sweeps through
all the cells, the first computation for k = 1 is finished. Similar computations
can be executed concurrently with the first one by pipelining more wavefronts
in succession immediately after the first one. The wavefronts of two successive
computations never intersect, since once a processor performs its share of oper-
ations for a given computation, the next set of data that it will receive can only
be from the next computation.

4.1 A functional Petri Net model of the Wavefront algorithm for
Z(k) = Y (k) + A · X(k), k = 1, 2, ...

The functional Petri Net model of the wavefront algorithm sketched in Figure 4
is constructed in a modular fashion. The basic models we need in this case are:
(1) A module to describe the Computational Process carried out in a node of the
wavefront array; (2) A module to describe de Data Transmission Processes of
the input and output data streams to/from the wavefront array. These modules



are depicted in Figure 5. To construct the global model nine instances of the CP
of Figure 5.a are needed. The modules of this type belonging to the same row are
composed via the fusion of the transition End i1 with the transition Sync i2;
and the transition End i2 with the transition Sync i3. These transitions fusions
represent the transmission of the result elaborated by the column 1 or 2, as input
to the columns 2 or 3, respectively, without intermediate buffering. Each one of
the CPs of the first column is composed with a DTP representing the input
stream of the corresponding i-th component of the vector Y (k) via the fusion
of the transitions Sync i1 and end. Each one of the CPs of the last column
is composed with a DTP representing the output stream of the corresponding
i-th component of the vector Z(k) via the fusion of the transitions End i3 and
begin. Each one of the CPs of the first row is composed with a DTP representing
the input stream of the corresponding i-th component of the vector X(k) via the
fusion of the transitions Sync 1i and end. Finally, we connect two CPs belonging
to the same column but located in rows 1 and 2, or in rows 2 and 3, by means of
a Internal DTP describing the flow of the corresponding component of the vector
X(k) through the rows of the array. This connection is done by the fusion of the
transitions Sync 1j and one transition begin and the corresponding transition
end with the transition Sync 2j (similarly for the case of rows 2 and 3).

Fig. 5. Basic modules for the construction of the functional Petri Net model of the
wavefront algorithm for Z(k) = Y (k) +A ·X(k), k = 1, 2, .... (a) Computational Process
associated to a node; (b) Data Transmission Process for the external/internal data
streams.

Figure 6 depicts an untimed functional Petri Net model of the wavefront al-
gorithm for for Z(k) = Y (k)+A·X(k), k = 1, 2, .... This net model is isomorphous
to the flow model in Figure 4.

The addition of time to the the model of Figure 6 will be done in the way
described in the previous section: adding a sequence place-transition-place in
parallel with the place representing the activity that consumes time. The new
added transition will be labeled with the time information. In the example, a
timed sequence will be added in parallel with each place Compute ij representing
the duration of the computation realized by the CP located at row i-th, column
j-th. Moreover, a timed sequence will be added in parallel to each place Transm
representing the consumption of time in the transmission of a data element in
the corresponding DTP.



Fig. 6. Untimed functional Petri Net model of the wavefront algorithm for Z(k) =
Y (k) + A ·X(k), k = 1, 2, ....

4.2 Analysis of the model

According to the proposed methodology in this paper, we proceed now to exploit
the model we have obtained in Figure 6.

4.3 Structural Analysis

First, we try to determine the correction of design obtained. This is realized
exploiting the structural properties of the net. This net is a strongly connected
marked graph (a subclass of Petri nets in which each place has only one input
and one output transition, being strongly connected in the sense of graph the-
ory). Moreover, in this net all circuits contain at least one token. From these
characteristics, we obtain the following functional properties of the model:

1) Any transition of the net is fireable from any reachable state of the net (the
net is live, thus deadlock-free). The minimal repetitive sequence of transition
firings contains all transitions of the net exactly once (it is guaranteed from
the existence of only one T-invariant: right annuller of the incidence matrix
of the net). This is a necessary condition for the execution of a wavefront in
the array.

2) The wavefronts propagate in an orderly manner without colliding one into
another. This can be concluded when taking into account the maximal dif-
ference between firings (in any firing sequence) of a transition Sync ij with



respect to its: (1) right neighbor transition Sync i(j + 1) is equal to 1. To
see this, observe that both transitions are covered by a circuit containing
only one token. This circuit enforces a strict alternation in the firing of both
transitions starting with the firing of Sync ij; (2) left neighbor transition
Sync i(j−1) is equal to 0. The reason is the same that in the previous case:
the existence of a circuit with a token that enforces the alternation of both
transitions starting with the transition Sync i(j − 1); (3) bottom neighbor
transition Sync (i + 1)j is equal to 1. Once again, this can be proven by
means of the vertical circuit covering both transitions and containning only
one token; and (4) top neighbor transition Sync (i − 1)j is equal to 0. All
these values can be obtained from the so called marking invariants of the
net (that in the case of marked graphs are the the elementary circuits of the
net) and can be computed in a structural way.

3) CP in a right to left diagonal can operate concurrently, but two right to
left adjacent diagonals cannot fully operate concurrently. This can be easily
proven observing that the 4 transitions Sync ij, Sync i(j+1), Sync (i+1)j
and Sync (i+ 1)(j+ 1) are covered by an elementary circuit containing only
two tokens. This means that only two transitions of these 4 transitions can
be concurrently fired. But taking into account the firing relations enumer-
ated in the previous point, only two scenarios are possible: (1) concurrent
firing of the transitions Sync ij and Sync (i+ 1)(j + 1); (2) concurrent fir-
ing of the transitions Sync i(j + 1) and Sync (i + 1)j. This points out the
initial statement about the mutual exclusion in the execution of right to left
neighbor diagonals.

4) The maximal concurrency can be obtained putting to work concurrently all
CPs in odd right to left diagonals or all CPs in even right to left diagonals.
This property can be obtained from the previous property extended to the
full array.

The previous analysis, without the need for an exhaustive simulation or con-
struction of the state space, points out that it is not possible to have the nine
CPs working/executing concurrently. This anomaly or bottleneck limiting con-
currency is due to the existence of the circuits covering four transitions, but
containing only two tokens as those described in the previous point 3. In order
to reach a fully concurrent operation of the nine CPs, we can modify the initial
design to enforce circuits with four tokens, covering the four transitions as in the
previous point 3. Thus, we can introduce a DTP between two consecutive CPs in
a row, decoupling the two CPs by the introduction of a buffer of capacity 1. An
alternative solution to enforce the circuits with four tokens to avoid the property
of point 3, is to introduce and additional DTP of capacity 1 connected to the
already existing between two rows in the same column. This additional buffering
enables a design with the maximal possible concurrency in the steady state of
the processing of the streams: nine simultaneous computational processes.

Economical Analysis For an economic analysis, the pricing models in [11]
could be considered, including pricing cost associated to different data transfers,



CPU time or storage usage. For the sake of simplicity in here, we are just con-
sidering an economic cost per CPU usage through time, information that can be
added into the model in the following way:

1) Let us assume, under a deterministic timing interpretation, a time α for
the timed transitions added to represent the duration of the input of data
elmements from the streams corresponding to the vectors Y (k) and X(k)

(timed transitions in parallel with the places TrY i and TrXi, a time β for
transitions corresponding to the execution of the code of the CPs (timed
transitions added in parallel with the places Comp ij), and a time γ for
transitions corresponding to the internal transmissions in the wavefront ar-
ray. A reachable (exact) bound of the throughput of the system can be
computed through structural techniques as in [6], obtaining a value equal to
the inverse of max{α, β, γ}. In general, under a stochastic timing interpre-
tation, the computed bounds following [6] can be eventually improved (in [7]
a search for embedded queueing networks was considered).

2) A bound of the mean cycle time for this net (the elapsed time between
two consecutive firings of a transition) is the inverse of the throughput,
from this value, we can compute the economic cost for the processing of
streams of length k = n, assuming the cost of the time unit per CPU, p:
Cost = max{α, β, γ} ∗ n ∗ p ∗ 9. It allows the designer to have an accurate
estimation of the cost taking into account the pricing applied to CPU time
consumed. Note that this analysis corresponds to the functional level and no
information on the operational level has been considered. In this case, the
model is designed with nine CPs having each nine computational resources
in isolation.

3) Taking into account that the model in Figure 6 is a marked graph an optimal
scheduling policy is just the earliest-firing-time policy (i.e. fire the transitions
as soon as possible).

The previous analysis has be done on the functional Petri Net model. In case
we wanted to introduce a particular operational level, we would have to proceed
to the refinement of the previous functional Petri Net model and proceed to a
similar analysis to the previously carried out: the timing and pricing information
that are currently in the Functional level would be removed, and then they would
be appearing in the new refined submodel. Besides, in such a refined model, the
relationship between economic cost and performance can be studied: i.e. how the
performance behaves when the economic cost is reduced.

5 Conclusions and Future work

In this paper, we have shown that Petri Nets (eventually with an associated
interpretation) are useful formal models to describe and analyze functional, per-
formance and economical properties (of interest for the designer) of streaming
applications. The separation between the graph-based structure of the model and
dynamic properties such as the marking, enables the use of many structure-based



analysis techniques. Through a simple Matrix-Vector multiplication in streaming
fashion, the wavefront algorithm, we have shown the underlying methodology in
the use of Petri Nets. First, the modeling task has been realized in a modu-
lar fashion using the subnet describing the behavior of computations and data
transmissions. After that, we have applied some structural analysis techniques
(due to their good tradeoff between decision power and computational complex-
ity) to verify that the functional behavior of our model was the expected: the
wavefronts are propagated through the array in an orderly way. In order to ver-
ify some quantitative properties, namely throughput and economic cost, have
added a timing interpretation to some transitions of the net, and have assumed
an associated CPU pay-per-use cost.
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