
A Domain Specific Language and a Pertinent
Business Vocabulary for Cloud Service Selection

Mathias Slawik and Axel Küpper

Telekom Innovation Laboratories, Technische Universität Berlin
Service-centric Networking

mathias.slawik|axel.kuepper@tu-berlin.de

Abstract. As more cloud computing offerings become available glob-
ally, cloud consumers’ efforts of gathering relevant information to sup-
port their service selection are raised considerably. On the one hand,
high-volume marketplaces, such as Salesforce AppExchange, feature non-
formalized offering descriptions. This abstinence of a service formaliza-
tion impedes cloud consumers’ capabilities to both rapidly assess the
fulfillment of their selection criteria and to compare different services
uniformly. On the other hand, contemporary research on formalized ser-
vice marketplaces faces significant challenges in its practical application,
especially its ease of use and pertinence. In this article we present a novel
textual domain specific language for describing services, a pertinent busi-
ness vocabulary of selection criteria, and a brokering component. These
artifacts raise cloud consumers’ capabilities while being practically ap-
plicable, pertinent to businesses, and easy to use.

Keywords: Cloud Service Brokering, Domain-specific Language, Ser-
vice Description Language, Cloud Computing.

1 Introduction and Motivation

According to the NIST Definition of Cloud Computing [23] one of the cloud
characteristics is on-demand self-service: consumers and providers are exempt
from having human interaction in order to provision computing capabilities.
Therefore, the description of cloud offerings becomes a crucial basis for service
selection by cloud consumers.

The service descriptions found within high-volume SaaS marketplaces, such
as Salesforce AppExchange [32] and the Google Apps Marketplace [13], rely on
nonformalized information, e.g., free text, images, and some structured fields,
e.g., author and category. While such content is appropriate for marketing pur-
poses, other uses are impeded as unstructured text is insufficient for compre-
hensive search and uniform service comparison. Therefore, advanced use cases
within service marketplaces require the formalization of service descriptions.

There are state-of-the-art research platforms for marketplaces and service
descriptions, e.g., the Unified Service Description Language (USDL) marketplace
[33], SPACEflight [37], and the FI-Ware Repository and Marketplace [34]. They

use advanced service models, such as USDL [25], as well as expressive ontologies,
such as Linked-USDL [26], and the Web Service Modeling Ontology for the
Internet of Services (WSMO4IoS) [39] to describe services.

Applying such research within a small and medium enterprises (SME) ap-
plication domain is one concept of the TRESOR project, whose architecture we
present in [42]. This publication presents the contributions of the TRESOR ser-
vice broker which matches customer requirements to cloud service capabilities
in order to support the service selection decisions by SME cloud consumers. The
broker provides a service description mechanism, a matchmaking component, as
well as means to support cloud consumers in their service selection.

While realizing the TRESOR service broker we observed four challenge ar-
eas in the application of contemporary research within an SME domain. These
motivate our contribution and are described in the following paragraphs:

1. Business pertinence. Advanced models and ontologies can expressively
and extensively describe services as well as support their global publication and
interlinking using Linked Data principles. However, we did not find any model
or ontology which specifically represents the selection criteria of SME cloud
consumers. To ensure the pertinence of the TRESOR broker to businesses we
contribute a derivation of such a vocabulary based on current empiric research.

2. Tooling complexity. We observed an absence of specialized knowledge
and skills for effective application of semantic technologies and tools in the SME
application domain. To be able to successfully establish the cloud broker in
this domain, it has to utilize common technologies and feature a simple design.
Consequently, we created the Service Description Language - Next Generation
(SDL-NG) framework which features a Ruby-based internal textual domain spe-
cific language (DSL). This framework presents simplified semantics and a clean
syntax, while allowing the vocabulary and service descriptions to be processed
by text-, XML-, as well as RDF-based technologies.

3. Documentation reuse. Due to the self-service nature of cloud comput-
ing, cloud services have to be extensively documented. Without changing this
documentation (e.g., by introducing annotations), contemporary models and on-
tologies cannot easily reuse those descriptions, creating information redundancy
in service descriptions. A common reuse mechanism is parsing cloud vendors
websites. We observed that it is a challenging task to integrate website parsers
with language frameworks without raising complexity. As our DSL is executed
as Ruby-code it can integrate arbitrary operations into service descriptions, cre-
ating self-sufficient entities wherein static elements and possibly highly dynamic
external content, such as cloud spot market prices, are easily blended.

4. Modeling defiances. There are some traits of cloud services, which
cannot be represented effectively with contemporary models and ontologies, such
as modeling service variants, price calculation, as well as dynamic properties.
While we do not address these in our current work, we outline and delineate
impending contributions in this area at the end of this publication.

Publication structure. We apply the Information Systems Research Frame-
work by Hevner et al. [15] which also structures this publication: Section 2 for-

mulates the application environment and its requirements to ensure research
relevance. To maintain research rigor, the related work is contrasted with the
requirements in Section 3. The design of the approach is presented in Section 4.
Section 5 contains its assessment and further development, while Section 6 con-
cludes this publication.

2 Application Environment and Requirements Analysis

This section outlines the characteristics of the SME application domain, presents
our requirements analysis methodology, and enumerates the resulting require-
ments. These are contrasted with the related work in Section 3 and provide the
basis for the design evaluation in Section 5.

Application environment. The application environment are service ecosys-
tems consisting of SMEs participating in public SaaS marketplaces as cloud
consumers and providers. One example is the TRESOR ecosystem which brings
together SMEs from the health sector to offer and consume secure and trusted
cloud services.

Three fundamental reasons underly having SMEs as the application domain:
First, SMEs play an important economic role. In Europe, for example, 99.8% of
all enterprises are SMEs and 66.5% of the EU workforce is employed by an SME
[44]. Second, SMEs receive significant benefits from cloud services as investigated
by Lacity et al. in [20]. This provides a compelling reason for SMEs to participate
in SaaS ecosystems as targeted by our approach. Third, the health sector aimed
by TRESOR is dominated by SMEs. This allows us to incorporate first-hand
experience and provides an appropriate evaluation environment.

Requirement analysis: methodology and results. To identify the re-
quirements for our contribution we applied a multi-stage approach combining
different methodologies. These are explicated in the following paragraphs:

First stage (Months 1-6). We first studied cloud-related literature to be-
come familiar with the state-of-the-art. Concurrently, we joined multiple stake-
holder group discussions to identify mutual and preliminary use cases, require-
ments and concepts. We published the results of this preliminary phase in [42].

Second stage (Months 7-18). We adjusted the Volere Requirements Spec-
ification Template [3] to capture stakeholder requirements iteratively: conducting
topic-focused stakeholder workshops, analyzing and modelling the requirements
using UML, and presenting, discussing, and adjusting the results. We identified
186 requirements which motivate previous publications [5], [6], [41], and [47].
We also joined a panel of experts from the accompanying research and other
projects from the SME-focused ”Trusted Cloud” intiative [12]. There, we com-
pared all approaches to cloud description, matchmaking, and brokering. These
group discussions let us assume that our requirements are not TRESOR specific,
but are shared requirements for a range of cloud marketplaces. We assume that
they can therefore also benefit from our contribution.

Current stage (Months 16-36). We derived implementation tasks from
the requirements and evaluated the related work regarding its suitability to

provide the foundation for the cloud broker implementation. We identified six
requirements, which allow pinpointing the deficiencies of the current state-of-the-
art and the advancements presented by our approach. They consist of functional
and non-functional requirements, as defined by ISO/IEC/IEEE 24765 [18]. The
following requirements have been identified:

R1 (Functional): Capture service aspects pertinent to businesses.
The cloud service formalization has to contain selection criteria which are per-
tinent to potential service consumers, as they use it for service selection on a
marketplace.

R2 (Functional): Prevent redundant information. A new formalization
has to prevent the introduction of redundant information by allowing to reuse
existing description sources.

R3 (Functional): Support the service selection by cloud consumers.
There are many SME service procurement agents which do not have extensive
expertise in cloud computing. The formalization should therefore not only list
selection criteria, but also support consumers in assessing the criteria fulfillment.

R4 (Non-functional): Low description effort. Any provider’s descrip-
tion effort presents an entry barrier for cloud marketplace participation. There-
fore, a new cloud formalization has to present measures to lower the efforts for
describing services.

R5 (Non-functional): Low language definition effort. SaaS ecosystems
have to adapt the service formalization to their audience, as only some selection
criteria are universal. The cloud formalization has to provide a mechanism for
easy adaptation to different scenarios.

R6 (Non-functional): Simple and usable tooling. Any software which
is needed to interact with the formalization has to be usable with reasonable
efforts by the respective target group, e.g., SME cloud service providers.

3 Related Work

This section presents the state-of-the-art in the area of our contribution and
contrasts it to the previously stated requirements. Fulfillment or dissatisfaction
of specific requirements are designated by + and − as a requirement number
suffix. For partly fulfilled requirements, a ◦ is used. The end of this section
summarizes the analysis of the related work.

3.1 Pertinent Selection Criteria for Businesses

Repschläger et al. have conducted two studies regarding the selection criteria
of cloud consumers: In [28] they present ”selection criteria for Software as a
Service” based on literature review, an extensive market analysis, and an evalu-
ation guided by expert interviews. The ”Cloud Requirement Framework” (CRF)
is outlined in [29]. It was devised using the same methodology and provides a
well-grounded conceptual basis for structuring SaaS, PaaS, and IaaS selection
criteria.

The ”Cloud Service Check” [9] is a German catalog of cloud selection criteria
with an extensive rationale providing guidance to assess different cloud service
offerings. It is one of the results of the German research project Value4Cloud
[10], whose application area are also SME cloud ecosystems.

The ”Service Measurement Index” (SMI) is provided by the Cloud Service
Measurement Initiative Consortium, led by Carnegie Mellon University [4]. It
is far more extensive than related works. The SMI uses relative measures for
assessing cloud offerings, i.e., ”points” awarded for a service KPI are relative
to the customer requirements and therefore differ for each respective service
evaluation.

Analysis. The preceding works offer empiric knowledge whose incorporation
into a solution design is the prerequisite for fulfilling Requirements 1 and 3.

3.2 Domain Specific Languages (DSLs)

Domain specific languages (DSLs) are tools to realize parts of computer systems.
A comprehensive overview of DSLs is given by Fowler in [11] who defines DSLs
as ”a computer programming language of limited expressiveness focused on a
particular domain”. Fowler differentiates between external and internal DSLs:
An external DSL is ”external” to an implementation language, e.g., regular ex-
pressions, SQL, and XML. An internal DSL is ”a particular way of using a
general-purpose language”, for example, a ”fluid API” [7] and C++ template
metaprogramming. Fowler recognizes a strong DSL culture in the programming
language Ruby, which we chose for implementing our approach.

Analysis. According to Fowler, one of the main benefits of using a DSL is
the domain specificity which fundamentally supports the communication with
domain experts. DSLs can therefore help to fulfill Requirements 4 and 5.

3.3 High-Volume SaaS Marketplaces

Their revenue and the number of users make Salesforce AppExchange [32] and
the Google Apps Marketplace [13] prototypical high-volume SaaS marketplaces.
Instead of an elaborate cloud service formalization, they utilize data models with
a small number of service attributes, such as free-text, images, provider info, and
a categorization.

Analysis. Capturing information pertinent to businesses is solely dependent
on the capability of the service provider to describe their services using unstruc-
tured information [R1◦]. If providers participate in multiple marketplaces, the
lack of a formalization introduces redundant information [R2−]. There is no sup-
port for consumers to assess criteria, as the information about selection criteria
fulfillment has to be collected manually [R3−]. A guidance by a formalization is
absent. Therefore, authoring service descriptions and enforcing a common struc-
ture between different descriptions is a non-trivial endeavor [R4−] [R5−]. The
majority of contemporary software interacting with the simple data models of
such marketplaces can be regarded as very mature, simple and usable [R6+].

3.4 Future Cloud Marketplaces and Service Description Languages

The features of future cloud marketplaces are postulated by Akolkar et al. in
[2], who emphasizes on ”intelligence” achieved by a solution repository and a
deep question answering ability (DeepQA [17], such as the IBM Watson tech-
nology [16]). Akolkar refers to the work of Legner [21], who asserts the need
for ”more sophisticated classification schemes which reflect the vocabulary of
the target customers”. Our contribution contains such a vocabulary. To realize
”intelligence” Akolkar proposes to use semantic technologies (e.g. OWL [45]) in
a ”vast knowledge base” using ”recent advances in NLP, Information Retrieval,
and Machine Learning to interpret and reason over huge volumes” [2]. There are
recent research approaches sharing the mindset of Akolkar, such as FlexCloud
(WSMO4IoS) and Linked-USDL:

FlexCloud (WSMO4IoS) The goal of the FlexCloud project is ”developing
methods and mechanisms for supporting a secure cloud lifecycle”[8]. It proposes
a service description language, a registry, and a discovery system, which are
presented by Spillner and Schill in [40]. The authors base their propositions on
the analysis of twelve existing languages and their lack of meeting the authors’
requirements of being ”easily usable, freely available, versatile, extensible and
scalable”. Our requirement analysis yielded similar requirements. The authors
created WSMO4IoS [39] which is based on one of the analyzed languages, the
Web Service Modelling Language (WSML) [46]. Any work on WSML has ceased
in 2008 having implications on the applicability of the work to current use cases.
The usability of WSML tools is also impeded due to the outdated technological
base of the WSMO IDE ”WSMO Studio” [35].

Linked-USDL. Another recent proposal is the Linked-USDL, which is pre-
sented by Pedrinaci, Cardoso, and Leidig in [26]. It extends USDL proposed by
Oberle et al. in [25]. According to Pedrinaci et al., USDL failed to gain adoption
due to ”complexity, difficulties for sharing and extending the model” [27]. USDL
is based on the Eclipse Modeling Framework [43], Linked-USDL utilizes OWL
[45] and reuses existing ontologies.

Analysis. Linked-USDL, WSMO4IoS, and our approach are motivated by
the shortcomings of contemporary service description languages. Yet, we focus
on supporting manual service selection by SME cloud consumers, while Linked-
USDL and WSMO4IOS have a very broad scope: Linked-USDL aims ”to max-
imise to the extent possible the level of automation that can be achieved during
the life-cycle of services” [26]. WSMO4IoS has the goal of ”covering as many
XaaS domains as possible” and ”unify these services as much as possible while
restricting the domain specific service characteristics as little as possible”[40].

This broad scope and the lacking enterprise evaluation environment are the
supposed reasons behind the failure of Linked-USDL and WSMO4IoS to capture
most of the selection criteria identified in Section 3.1 [R1−]. Linked-USDL and
WSMO4IoS cannot capture HTML descriptions [R2−] or support SME users in
their cloud service selection [R3−]. Due to the expressive power of the utilized
ontologies and the broad scope of both approaches, the description and language
definition effort can be regarded as high in comparison to DSLs and JSON/XML-

based models, especially for SME users [R4−][R5−]. There are basic editors for
Linked-USDL [22] and WSMO4IoS [38] which could be both reasonably used by
SME users. Yet, the extension of both languages is only supported by ontology
design software which targets expert users [R6◦].

We have discussed both USDL and Linked-USDL with Leidig and Oberle to
get design recommendations for our contribution.

3.5 Summary

The analysis of the related work clearly shows the lack of a solution fulfilling all
of the enumerated requirements of SME cloud ecosystems. While there has been
extensive research about pertinent selection criteria, almost none of them are
reflected within service description languages, as well as contemporary and future
cloud marketplaces. Furthermore, the benefits of using DSLs to capture service-
domain specific information is not used in any of the analyzed contributions.

4 Formalizing Cloud Service Descriptions

Our contribution is divided into three main elements, which also structure this
chapter: The SDL-NG framework1 provides the metamodel and DSL framework
for vocabulary definition and service description. A pertinent business vocabu-
lary2 uses the SDL-NG framework to formalize empiric knowledge about selec-
tion criteria. The service broker3 builds upon the SDL-NG framework and the
business vocabulary to provide a user interface to interact with the system.

4.1 SDL-NG Framework

The Service Description Language - Next Generation (SDL-NG) framework is
built using the Ruby programming language to enable the specification of a
service vocabulary as well as the description of services using this vocabulary in
the form of domain specific languages.

The design of the SDL-NG framework is motivated by the requirements and
the analysis of the related work: A DSL lowers description and language defi-
nition efforts (R4 & R5), especially in relation to service description languages
using semantic technologies. From our past experience using Ruby as well as
other programming languages we presume that a Ruby-based DSL can provide
a simpler and more usable tooling (R6) than the language tools of WSMO4IoS
and Linked-USDL. As the service description is in fact program code, it can
be augmented by libraries to implement the integration of existing sources (R2),
e.g., scraping HTML documents for feature descriptions. Another benefit of using
Ruby is the low ”syntactic noise”, i.e., the overhead characters not conveying

1 https://github.com/TU-Berlin-SNET/sdl-ng
2 contained as /examples/vocabulary in the SDL-NG source
3 https://github.com/TU-Berlin-SNET/tresor-broker

https://github.com/TU-Berlin-SNET/sdl-ng
https://github.com/TU-Berlin-SNET/tresor-broker

Listing 1.1: Example vocabulary definition

1 type :cloud_service_model

2 cloud_service_model :saas

3 cloud_service_model :paas

4 cloud_service_model :iaas

5 service_properties do

6 string :service_name

7 cloud_service_model

8 end

Listing 1.2: Example service description

1 service_name "Google Drive for Business"

2 cloud_service_model saas

semantic meaning (semicolons, brackets, etc.) are considerably lower in Ruby
than in other programming languages, such as Java and C++.

The remainder of this subsection presents the SDL-NG description life-cycle,
its metamodel and type system, as well as its HTML parsing and export capabil-
ities.

Description life-cycle. The general life-cycle of service descriptions con-
sists of the vocabulary definition and its instantiation in service descriptions.
The main task of the vocabulary is to define the properties a service can have,
their types, and their documentation. Vocabulary descriptions can be distributed
over multiple files. An example SDL vocabulary description is shown in List-
ing 1.1. Line 1 defines a new Type: CloudServiceModel. Afterwards, some
CloudServiceModel instances are defined. Starting from Line 5, new proper-
ties are added to the Service class: A string property named service name

and a property of the type CloudServiceModel with an auto-generated name
cloud service model. Additional files contain the multi-lingual documentation
of the vocabulary.

Listing 1.2 shows a service description, based on pairs of Service property
names and their values. Setting the value of a property is in fact an invocation
of a Ruby method on a Service instance. The predefined instances are referred
by their identifier, e.g., the saas instance of CloudServiceModel.

Metamodel and type system. The SDL-NG metamodel and type sys-
tem are based on Ruby classes forming a simple data model: Types containing
Property instances. Properties of Type instances are set to either one or many
values, e.g., a String containing a service name, or other Type instances, e.g.,
the Firefox instance of the Browser Type. Any property value can be annotated
to capture the ”fine print” of service descriptions which cannot be modeled ef-
fectively using the vocabulary. Retrieving and setting properties is internally
delegated to reflective methods, allowing custom persistence options, such as
the default in-memory persistence and the MongoDB-based persistence used by
the cloud broker. An SDL user does not need to know how to instantiate a spe-
cific Ruby class in order to set a property, as all classes are wrapped. These

Listing 1.3: HTML parsing with SDL-NG

1 fetch_from_url(<URL>4, <CSS>5).each do |header|

2 feature header.content.strip , header.search(’~p’)[0]

3 end

wrappers allow simple class instantiation with strings and numbers, e.g., using
the string "1 $" to create a money value instead of having the user know to
write Monetize.parse("1 $"). Wrapped strings and numbers are retained in
the wrappers to ease the serialization of property values.

HTML parsing. Preventing redundant information (R2) requires a simple
mechanism to retrieve HTML SaaS descriptions. To ensure low efforts (R4) and
simple tooling (R6), static service information and parsing commands should
be defined in a self-sufficient service description. As SDL-NG descriptions are
Ruby code, static information (e.g. service name "My service") as well as
HTML parsing commands (e.g. fetch from url(...)) can be easily blended
(e.g. service name fetch from url(...)). Listing 1.3 illustrates the combi-
nation of HTML parsing and service description by showing the retrieval of
Feature properties from the Google Drive for Business documentation. This ex-
ample highlights the brevity, conciseness, and accessibility which can be achieved
using language-internal DSLs. Besides statically reusing parts of websites for ser-
vice description, the integration of external information can be highly dynamic
in nature, e.g., when integrating spot market prices for cloud resources.

Export capabilities. To further prevent redundancies (R2), the vocabulary
and descriptions should be consumable by other information systems. SDL-NG
allows exporting descriptions as XML and the vocabulary as a corresponding
XML Schema Definition (XSD) [36]. To support semantic processing, exporting
descriptions to RDF is also possible. Generating a Web Ontology Language
(OWL) [45] from the vocabulary is planned for one of the next releases.

4.2 A Pertinent Business Vocabulary

We have defined a vocabulary of selection criteria using the SDL-NG framework
on the basis of empiric results from Repschläger et al. and the Cloud Service
Check. It consists of 37 Type classes, 31 Service properties and 52 Type in-
stances, covering a broad range of criteria, structured according to the Cloud
Requirement Framework: Characteristics, e.g., cloud service model, service
categories, Charging, e.g., charge unit (user account, floating license), Com-
pliance, e.g., data location, audit options (e.g. audit logging), Delivery, e.g.,
billing and payment options, Dynamics, e.g., the duration for provisioning an
end user, Interop, e.g., features, interfaces, and compatible browsers, Opti-
mizing, e.g., maintenance windows and future roadmaps, Portability, e.g., ex-
portable and importable data formats, Protection, e.g, the communication pro-
tection (HTTPS, VPN, TCTP), Provider management, e.g., support avail-
ability, Reliability, e.g., offline capabilities, Reputation, e.g., year of service es-
tablishment, and Trust, e.g, providers’ financial statement, reference customers.

To achieve low description efforts (R4), Service properties are designed for high
readability, e.g., ”employs 49829”, or ”is protected by https”.

4.3 The Service Broker

The service broker is part of the TRESOR ecosystem and offers an authoring
interface for service descriptions, a repository query interface, cloud consumer
search profiles, management of description versions, a description update work-
flow, and a module for booking and provisioning third party cloud services. The
broker is built on the basis of the Ruby on Rails web framework [14] and uses
MongoDB [24] for description persistence. To meet Requirements R4 and R6
(low description effort and simple tooling) the service broker includes a cus-
tomized version of the Ace JavaScript editor [1] to allow comfortable authoring
of service descriptions. To guide description authors, the broker can present a
comprehensive listing of all properties and predefined instances of the business
vocabulary in the form of a ”cheat sheet”. It is covered by 102 test cases, which
cover 93,5 % of source lines of code.

5 Assessment and Outlook

We carried out an analytical evaluation, contrasting our contribution to its re-
quirements, an experimental evaluation, where we applied the SDL-NG frame-
work in an SME setting, and a preliminary empirical evaluation.

Analytical Evaluation. To ensure capturing service aspects pertinent to
businesses(R1) we extensively and thoroughly compiled requirements from SME
stakeholders, included empiric studies in our work, discussed it with the authors
of the Cloud Requirement Framework and the Cloud Service Check, and partic-
ipated in expert panels to assure its relevance for different use cases. To prevent
redundant information (R2) the SDL-NG framework can integrate HTML de-
scriptions as well as export them to XML/XSD and RDF. We support the service
selection by cloud consumers (R3) by including rationale and extensive property
documentation. By relying on text files containing property-value pairs SDL-NG
presents low description effort (R4). The language definition also relies on a sim-
ple textual syntax, leading to low language definition effort (R5). Our tooling is
simple (R6), having a simple meta- and data model and consisting of only 1.200
source lines of code.

Experimental evaluation. The SDL-NG source repository contains de-
scriptions of two widely used SaaS services, Google Apps for Business and Sales-
force Sales Cloud. These descriptions test the vocabulary pertinence and simplic-
ity and also present a trial of the integration of external HTML content, as well
as the XML/XSD and RDF export functionality. So far, we did not encounter
challenges in the application of the SDL-NG framework.

Empirical evaluation. While designing our contribution we regularly pre-
sented preliminary stages to different project and external partners to carry out

short explorative expert interviews to gain their first impressions on the respec-
tive state of our contribution. To test the usability of our approach in the SME
domain we will carry out user studies at the end of the project.

Outlook. The outlook of our contribution is the ”Open Service Compendium”:
by refining the vocabulary, creating an easy to use web interface, and opening up
the service broker, we want to create a crowd-sourced ”Wikipedia for Services”,
where any user can describe any service and use the broker to support their
service selection. Four additional challenges have been identified which need to
be addressed to create such a system:

Modeling service variants. Modeling the large amount of possible com-
binations of SaaS offering’s variants and optional features is not feasible. The
Open Service Compendium will use a feature model [19] based variant model-
ing. The features would contain Service property values, so that any offering
description can be created through selecting features and combining properties.

Price modeling and calculation. Contemporary price models and ontolo-
gies are either lacking in sophistication, are too complicated, or cannot capture
existing SaaS services. The Open Service Compendium should capture the price
models of common SaaS offerings to the degree that potential service consumers
can easily estimate their consumption charges. By combining the price and fea-
ture model, complex charging rules can also be supported.

Property brokering information. The Service Compendium should be
able to assess the tendency of property values, i.e., if a value is better or worse
than another value. This provides the basis for implementing analytic processes,
such as the analytic hierarchy process [30] and the analytic network process
[31] to support users with their service selection. We also want to include the
findings of the CSMIC [4] to automate the measurement of service selection
criteria fulfillment.

Dynamic vocabulary. To keep usage efforts of large vocabularies low, the
vocabulary should be dynamically adaptable. For example, it should be possi-
ble to define category-specific properties. Furthermore, the definition of derived
properties, e.g., ”Cloud Storage per Euro” could help service comparison con-
siderably.

6 Conclusion

Finding suitable cloud services is a laborious task, especially for SMEs. To sup-
port SMEs with their service selection better than current approaches we have
created a novel DSL, a pertinent business vocabulary, and a brokering compo-
nent. As we apply and evaluate the components in an appropriate SME environ-
ment we ensure their relevance. We have designed them rigorously, building upon
empirical studies and established state-of-the-art. By publishing our work as
open source software and by continuously engaging with the service community
we want to further advance our work towards an ”Open Service Compendium”,
which can support a broad range of cloud consumers in their service selection.

References

1. Ajax.org B.V.: Ace (2014), http://ace.c9.io
2. Akolkar, R., Chefalas, T., Laredo, J., Peng, C.S., Sailer, A., Schaffa, F., Silva-Lepe,

I., Tao, T.: The Future of Service Marketplaces in the Cloud. In: 2012 IEEE 8th
World Congress on Services. pp. 262–269 (2012)

3. Atlantic Systems Guild Ltd.: Volere Requirements Specification Template (2014)
4. Carnegie Mellon University: CSMIC: Cloud Service Measurement Initiative Con-

sortium (2012), http://csmic.org/
5. Ermakova, T., Fabian, B., Zarnekow, R.: Security and Privacy System Require-

ments for Adopting Cloud Computing in Healthcare Data Sharing Scenarios. In:
Proceedings of the AMCIS 2013 (2013)

6. Ermakova, T., Huenges, J., Erek, K., Zarnekow, R.: Cloud Computing in Health-
care – A Literature Review on Current State of Research. In: Proceedings of the
AMCIS 2013 (2013)

7. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley (2003)

8. FlexCloud: FlexCloud (2014), http://flexcloud.eu/
9. fortiss GmbH: CloudServiceCheck (2014), http://www.value4cloud.de/de/

cloudservicecheck

10. fortiss GmbH: Value4Cloud (2014), http://www.value4cloud.de
11. Fowler, M.: Domain-Specific Languages. Addison-Wesley (2011)
12. German Federal Ministry for Economic Affairs and Energy: Trusted Cloud (2014),

http://www.trusted-cloud.de/

13. Google: Google Apps Marketplace (2014), https://www.google.com/enterprise/
marketplace/home/apps/?pli=1

14. Heinemeier Hansson, D.: Ruby on Rails (2014), http://rubyonrails.org
15. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Sys-

tems Research. In: Gupta, A. (ed.) MIS Quaterly, vol. 1, pp. 75–105 (2004)
16. IBM: Watson (2014), http://www.ibm.com/smarterplanet/us/en/ibmwatson
17. IBM Research: The DeepQA Research Team (2013), http://www.research.ibm.

com/deepqa

18. ISO/IEC/IEEE: Systems and software engineering - Vocabulary (2010)
19. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-

Oriented Domain Analysis (FODA): Technical Report (1990)
20. Lacity, M., Reynolds, P.: Cloud Services Practices for Small and Medium-sized

Enterprises. In: MIS Quarterly Executive, vol. 13:1, pp. 31–44. Management Infor-
mation Systems Research Center, Minneapolis (2014)

21. Legner, C.: Is There a Market for Web Services? In: Di Nitto, E., Ripeanu, M.
(eds.) Service-Oriented Computing - ICSOC 2007 Workshops, Lecture Notes in
Computer Science, vol. 4907, pp. 29–42. Springer, Berlin, Heidelberg (2009)

22. Leidig, T.: Simple editor for Linked USDL descriptions (2013), https://github.
com/linked-usdl/usdl-editor

23. Mell, P., Grance, T.: The NIST Definition of Cloud Computing (2011)
24. MongoDB, Inc.: mongoDB: Agile and Scalable (2014), http://www.mongodb.org
25. Oberle, D., Barros, A., Kylau, U., Heinzl, S.: A unified description language for

human to automated services. Information Systems 38(1), 155–181 (2013)
26. Pedrinaci, C., Cardoso, J., Leidig, T.: Linked USDL: A Vocabulary for Web-Scale

Service Trading. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab,
S., Tordai, A. (eds.) The Semantic Web: Trends and Challenges, Lecture Notes in
Computer Science, vol. 8465, pp. 68–82. Springer International Publishing (2014)

http://ace.c9.io
http://csmic.org/
http://flexcloud.eu/
http://www.value4cloud.de/de/cloudservicecheck
http://www.value4cloud.de/de/cloudservicecheck
http://www.value4cloud.de
http://www.trusted-cloud.de/
https://www.google.com/enterprise/marketplace/home/apps/?pli=1
https://www.google.com/enterprise/marketplace/home/apps/?pli=1
http://rubyonrails.org
http://www.ibm.com/smarterplanet/us/en/ibmwatson
http://www.research.ibm.com/deepqa
http://www.research.ibm.com/deepqa
https://github.com/linked-usdl/usdl-editor
https://github.com/linked-usdl/usdl-editor
http://www.mongodb.org

27. Pedrinaci, C., Cardoso, J., Leidig, T.: Presentation: Linked USDL: a Vocabu-
lary for Web-scale Service Trading (2014), http://slideshare.net/cpedrinaci/
linked-usdl-a-vocabulary-for-webscale-service-trading

28. Repschläger, J., Wind, S., Zarnekow, R., Turowski, K.: Selection Criteria for Soft-
ware as a Service: An Explorative Analysis of Provider Requirements. In: Proceed-
ings of the AMCIS 2012 (2012)

29. Repschläger, J., Zarnekow, R., Wind, S., Klaus, T.: Cloud Requirement Frame-
work: Requirements and Evaluation Criteria to adopt Cloud Solutions. In: Pries-
Heje, J., Chiasson, M., Wareham, J., Busquets, X., Valor, J., Seiber, S. (eds.)
Proceedings of the 20th European Conference on Information Systems (2012)

30. Saaty, T.L.: What is the Analytic Hierarchy Process? In: Mitra, G., Greenberg,
H.J., Lootsma, F.A., Rijkaert, M.J. (eds.) Mathematical Models for Decision Sup-
port, NATO ASI Series, vol. 48, pp. 109–121. Springer-Verlag (1988)

31. Saaty, T.L.: Analytic network process. In: Encyclopedia of Operations Research
and Management Science, pp. 28–35. Springer US (2001)

32. Salesforce: AppExchange (2014), https://appexchange.salesforce.com
33. SAP AG: USDL Marketplace (2012), http://sourceforge.net/projects/

usdlmarketplace

34. SAP AG: FI-Ware Marketplace and Repository Reference Implementation (2013),
https://github.com/service-business-framework

35. Simov, A., Dimitrov, M.: WSMO Studio (2008), http://sourceforge.net/

projects/wsmostudio/files

36. Sperberg-McQueen, C.M., Thompson, H.: XML Schema (2014), http://www.w3.
org/XML/Schema

37. Spillner, J.: SPACEflight — A versatile live demonstrator and teaching system
for advanced service-oriented technologies. In: IEEE (ed.) Proceedings of the 21st
CriMiCo. pp. 455–456. IEEE (2011)

38. Spillner, J.: wsmo4ios-editor (2012), http://serviceplatform.org:8000/trac/

browser/packaging/scripts/develtools/wsmo4ios-editor

39. Spillner, J.: WSMO4IoS (2013), http://serviceplatform.org/spec/wsmo4ios/
40. Spillner, J., Schill, A.: A Versatile and Scalable Everything-as-a-Service Registry

and Discovery. In: Desprez, F., Ferguson, D., Hadar, E., Leymann, F., Jarke, M.,
Helfert, M. (eds.) CLOSER 2013 Proceedings. pp. 175–183. SciTePress (2013)

41. Thatmann, D., Slawik, M., Zickau, S., Küpper, A.: Deriving a Distributed Cloud
Proxy Architecture for Managed Cloud Service Consumption. In: CLOUD 2013
Proceedings. pp. 614–620. IEEE (2013)

42. Thatmann, D., Slawik, M., Zickau, S., Küpper, A.: Towards a Federated Cloud
Ecosystem: Enabling Managed Cloud Service Consumption. In: GECON 2012 Pro-
ceedings. Springer-Verlag, Berlin, Germany (2012)

43. The Eclipse Foundation: Eclipse Modeling Framework Project (EMF) (2014),
http://www.eclipse.org/modeling/emf

44. The European Commission: A Recovery On The Horizon: Annual Report on Eu-
ropean SMEs 2012/2013 (2013)

45. W3C OWL Working Group: OWL 2 Web Ontology Language Document
Overview: W3C Recommendation 11/12/2012 (2012), http://www.w3.org/TR/

owl2-overview

46. WSML Working Group: Web Service Modeling Language (2008), http://www.

wsmo.org/wsml

47. Zickau, S., Küpper, A.: Towards Location-based Services in a Cloud Computing
Ecosystem. In: Ortsbezogene Anwendungen und Dienste, pp. 187–190 (2012)

http://slideshare.net/cpedrinaci/linked-usdl-a-vocabulary-for-webscale-service-trading
http://slideshare.net/cpedrinaci/linked-usdl-a-vocabulary-for-webscale-service-trading
https://appexchange.salesforce.com
http://sourceforge.net/projects/usdlmarketplace
http://sourceforge.net/projects/usdlmarketplace
https://github.com/service-business-framework
http://sourceforge.net/projects/wsmostudio/files
http://sourceforge.net/projects/wsmostudio/files
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://serviceplatform.org:8000/trac/browser/packaging/scripts/develtools/wsmo4ios-editor
http://serviceplatform.org:8000/trac/browser/packaging/scripts/develtools/wsmo4ios-editor
http://serviceplatform.org/spec/wsmo4ios/
http://www.eclipse.org/modeling/emf
http://www.w3.org/TR/owl2-overview
http://www.w3.org/TR/owl2-overview
http://www.wsmo.org/wsml
http://www.wsmo.org/wsml

	A Domain Specific Language and a Pertinent Business Vocabulary for Cloud Service Selection

