
CloudTracker: Using Execution Provenance to Optimize
the Cost of Cloud Use

Geoffrey Douglas, Brian Drawert, Chandra Krintz, and Rich Wolski

Computer Science Dept.
Univ. of California, Santa Barbara

Abstract. In this work, we investigate tools that enable dollar cost optimiza-
tion of scientific simulations using commercial clouds. We present a framework,
called CLOUDTRACKER, that transparently records information from a simula-
tion that is executed in a commercial cloud so that it may be “replayed” exactly
to reproduce its results. Using the automated CLOUDTRACKER provenance and
replay facilities, scientists can choose either to store the results of a simulation or
to reproduce it on-demand – whichever is more cost efficient in terms of the dol-
lar cost charged for storage and computing by the commercial cloud provider. We
present a prototype implementation of CLOUDTRACKER for the Amazon AWS
commercial cloud and the StochSS stochastic simulation system. Using this pro-
totype, we analyze the storage-versus-compute cost tradeoffs for different classes
of StochSS simulations when deployed and executed in AWS.
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1 Introduction

Easy and inexpensive access to vast compute and storage resources, in the form of cloud
computing, along with the availability of prodigious amounts of digital information
(financial, scientific, social) gathered via the Internet, have fueled the trend toward data-
centric commercial application development. Data products originate from a variety of
sources including mobile applications, streaming media, social networking, and large-
scale analytics. Such data products in many cases require significant computational
power for their generation and processing as well as substantial storage capacity for
their preservation and collaborative sharing.

Scientific computing in general, and scientific simulation in particular, share many
of these characteristics, but as yet, have failed to leverage the technological advantages
offered by cloud computing. One reason for this lack of uptake is that the cost models
associated with scientific computation are different than those associated with com-
mercial enterprises. In a scientific context, the longevity of data (for the purposes of
peer-actuated verification) is theoretically indefinite as is the need for reproducibility.

To aid enterprises with cost control, public cloud vendors make compute and storage
resources separately available on an on-going, pay-per-use, rental basis. This “pay-as-
you-go” model makes them attractive to businesses that experience transient fluctua-
tions in computational needs, but can create infeasible long-term cost obligations for
the storage of scientific results.



In this work, we investigate CLOUDTRACKER – a system for implementing the
reproduction of scientific simulations in commercial cloud systems for the purposes
of reproducibility and cost optimization. In many simulation contexts, the code that
implements a simulation is significantly smaller than the results it produces. CLOUD-
TRACKER records the computational provenance (in a compact form) associated with a
simulation so that it may be replayed exactly in a commercial cloud. Thus a scientist can
choose either to store the results or to rerun the simulation when the results are needed –
which ever yields the best cost-benefit relationship based on cloud storage and compute
pricing. CLOUDTRACKER also facilitates data sharing (and verification) by making it
possible for those, other than the progenitor, to regenerate a data set thereby aiding
scientific reproducibility.

CLOUDTRACKER implements both automated provenance tracking and replay for
applications that

– produce outputs deterministically from their inputs,
– use a “job manager” to automate application execution in a distributed setting, and
– can run in a cloud environment consisting of virtualized commodity and storage

resources and yield the same numerical results.

Because clouds must automate the process of deploying an application (typically via a
set of web services), it is possible to capture exactly the environment in which an appli-
cation is executed in a cloud, including all of the operating system code, environment
variables, and support library dependencies that are used. Moreover, commercial clouds
operate at sufficient customer scale to make it difficult or impossible to deprecate “old”
software. Operating system virtualization preserves the longevity of old releases so that
they may be reconstituted years after they are first used under the same automated con-
trol. This longevity is essential for commercial adoption of clouds by enterprises as
software lifecycle is a key cost control business parameter. CLOUDTRACKER leverages
these properties to ensure that the results of a deterministic computation can either be
stored or reproduced on demand at a later time.

In this way, CLOUDTRACKER complements previous work on data provenance
for cloud systems [14, 1, 22, 9, 18]. In particular, CLOUDTRACKER records the mini-
mal amount of meta-information necessary to re-execute an application (a.k.a a job)
but it does not store the output data produced by the job itself. It captures this meta-
information by observing the launch sequence of commands made by a job manager
(that is responsible for running the job) and by interrogating the cloud platform for
cloud configuration information associated with the job.

The work described in this paper focuses on a prototype implementation of CLOUD-
TRACKER for the Amazon Web Services (AWS) commercial cloud and the StochSS [20]
cloud-based job manager for stochastic simulation. CLOUDTRACKER integrates with
AWS and StochSS via a well-defined API that we believe generalizes to other systems
with similar application properties. It also uses the Amazon Simple Storage Service
(S3) – Amazon’s inexpensive and most scalable storage service – to store the meta-data
associated with each job run. Finally, CLOUDTRACKER exports a graphical interface
(GUI) for scientists to use to track provenance, to initiate job replay, and to extract the
actionable cost analysis that CLOUDTRACKER generates.
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Fig. 1. CLOUDTRACKER System Overview. CLOUDTRACKER operates transparently alongside
a job manager and with a public cloud, recording information about the execution environment
of programs (jobs) into manifest files stored securely in cloud storage. At a later date, a user can
use the CLOUDTRACKER web interface to specify a job to be replayed or to analyze the cost of
job execution (production of the results) and result storage.

Our results indicate that at a sufficiently large scale (jobs that take multiple hours
or days to complete and generate many gigabytes or terabytes worth of data), there are
significant cost differences between storage and computation. For a given job, there
is a specific point in time when storage becomes more expensive than computation.
CLOUDTRACKER is able to present this information to users graphically. CLOUD-
TRACKER’s reproduction engine is also able to replay a job on a wide range of AWS
virtual machine configurations (each having a different cost) to allow the user to iden-
tify the most time and cost efficient combination. This information is also reported to
users through the CLOUDTRACKER Web UI to give users insight into the cost of using
different cloud resources.

In the sections that follow, we overview CLOUDTRACKER and describe its proto-
type implementation. We next present StochSS and show how we augment its job man-
ager to support CLOUDTRACKER. We then evaluate CLOUDTRACKER for StochSS and
present empirical results on using the system to trade off the costs of computation and
storage. We follow this with a discussion of the limitations of the CLOUDTRACKER
prototype, related work, and our conclusions.

2 CloudTracker

CLOUDTRACKER is an extensible software platform for tracking information about the
execution of programs that are deployed using cloud infrastructures, such that they can
be reproduced (i.e. replayed) at some later time. CLOUDTRACKER uses this tracking
information to automate replay and to help users identify the best cost trade off between
re-computing their data sets and storing them using cloud resources.

CLOUDTRACKER is designed to operate alongside an arbitrary, cloud-aware job
management technology (e.g. tasking systems [7, 20, 12], batching systems [13, 21],



custom scripts, and others) as depicted in Figure 1. CLOUDTRACKER is not an inter-
ception architecture, requiring jobs to pass through before execution. Rather, it pro-
vides jobs managers with an API and library that they can use to request that CLOUD-
TRACKER record the execution provenance of a job. CLOUDTRACKER receives and
records a unique identifier for each job to which it maps information about the execu-
tion environment of the job. Together, we refer to the map and provenance information
that CLOUDTRACKER collects, stores, and manages, a job manifest. CLOUDTRACKER
stores the manifest with read-only access rights in a cloud datastore that is universally
accessible, persistent, and immutable.

CLOUDTRACKER also provides a web service with which users can replay a previ-
ously tracked execution by selecting the appropriate job ID and specifying their cloud
credentials. The service retrieves the provenance information that it has associated with
the job ID and uses it to replicate the state under which the original job ran. CLOUD-
TRACKER sets up a virtual environment in the cloud to replay the job using the original
inputs and returns the results back to the user. CLOUDTRACKER can also store the re-
sults temporarily in cloud storage or forward them directly the requester. Users can then
compare the results against those reported by the progenitor of the job.

The CLOUDTRACKER service also provides users with information about the cost
of a job. This cost analysis service reports the cost for storing the results of the job in
the persistent object store of the cloud (e.g. the Simple Storage Service (S3) in AWS
or Cloud Storage in the Google Cloud Platform). The service reports the cost of the
original execution on an hourly and per-minute basis and can replay the job to determine
the cost under different scenarios (e.g. using different instance sizes). Finally, the cost
analysis service estimates how long the results can be stored before the cost of doing so
is outweighed by that of replaying the job and reproducing the job immediately prior to
the time at which the results are to be used or shared.

2.1 CLOUDTRACKER Implementation

CLOUDTRACKER is written in the Python programming language so that it is portable
and facilitates easy integration with popular public and private cloud APIs (AWS and
Eucalyptus [8]), via the publicly available boto toolkit [6]. CLOUDTRACKER exports an
application programming interface (API) with which job execution systems (or individ-
ual users and scientists) can interface to provide tracking, reproduction, and cost analy-
sis support for their cloud-based applications. We overview this API in Section 2.3.

The CLOUDTRACKER platform is a distributed web application that can be in-
tegrated into any cloud infrastructure or platform-as-a-service (PaaS). The CLOUD-
TRACKER backend provides provenance tracking (the API implementation); the fron-
tend provides users with access to job replay and cost analysis. The backend captures
and records job information provided by authenticated job managers and metadata gath-
ered from the cloud environment. CLOUDTRACKER manages this information in the
form of a compact manifest which it stores in persistent, cloud storage using the cre-
dentials of the CLOUDTRACKER administrator. CLOUDTRACKER makes the recorded
information (execution provenance) publicly readable but not modifiable to ensure trust-
worthy reproduction of results and datasets.



The frontend provides a web-based user interface (UI) for interacting with the
CLOUDTRACKER platform. Users authenticate themselves and supply their cloud cre-
dentials (under which an application’s execution is to be replayed) via the CLOUD-
TRACKER UI. They then select a job for which they want cost estimates or to reproduce
output data. CLOUDTRACKER uses the securely stored information associated with the
job ID to perform the service for the user and to return the result to the user via a web
browser.

2.2 Leveraging Amazon Web Service Interfaces

The public cloud we use for our CLOUDTRACKER prototype is Amazon Web Services
(AWS) [3] given its current position as the market leader in cloud infrastructure use [5].
We also selected it because the Eucalyptus private cloud infrastructure [15] is API-
compatible with AWS and thus CLOUDTRACKER users can run CLOUDTRACKER on
local cluster resources or in the public cloud without modification.

We leverage a number of recent advances in public cloud APIs from AWS to im-
plement the CLOUDTRACKER platform. In our scenario, job managers use the Elastic
Compute Cloud (EC2) service, and deploy jobs to EC2 instances. These are virtual
machines, running Linux operating systems. Different machine types are available, of-
fering different amounts of computational resources, each with their own usage price.
Once configured with all of the necessary application software, libraries, and filesystem
data, a snapshot of the instance can be saved as an immutable, reusable image called an
Amazon Machine Image (AMI). Typically, job managers use the ID of a given AMI to
launch EC2 instances to run applications in the cloud. CLOUDTRACKER records this
AMI so that it can be used for the replay of a job. AMIs contain most of the relevant as-
pects of a job’s execution environment and as such, CLOUDTRACKER need only store
a small amount of information to capture this information.

CLOUDTRACKER stores job provenance information in AWS S3 using the AWS
S3 manifest APIs [4]. Data in S3 are called objects and objects are grouped together
into buckets. With S3, access permissions can be set at both the object and bucket level,
giving users full control over who can view and edit their data.

2.3 Job Tracking

To perform job tracking, a job manager interoperates with the CLOUDTRACKER plat-
form using CLOUDTRACKER API that we provide as an open source Python library.
We summarize the API operations in Table 1. To initiate tracking for a new job, the job
manager instantiates a new CLOUDTRACKER object. This operation sets up a commu-
nication channel with the name service and authenticates the job manager. The job man-
ager provides CLOUDTRACKER with a unique identifier for the jobs; CLOUDTRACKER
augments this with a unique identifier for the job manager (so that multiple concurrent
job managers can be supported at once). CLOUDTRACKER refers to this unique iden-
tifier as the job’s UUID and uses it to allocate a bucket in cloud storage and to create
a manifest file in that bucket to hold the job’s provenance data. CLOUDTRACKER then
queries the EC2 metadata service to query details about the job’s EC2 instance (given



API Semantics
CloudTracker(uuid,instance id) Instantiates new CloudTracker instance

Creates new directory in CloudTracker S3 bucket from the UUID
Collects instance metadata and writes it to a manifest file

track input(exec string) Writes executable name and input parameters to manifest
Discovers input files and uploads them alongside manifest

track output(output dir) Writes location of output directory to manifest
exec state(time,size) Computes execution time of job and size of output data

Writes execution time and data set size to manifest

Table 1. CLOUDTRACKER API

the ID passed in from the job manager) including AMI-ID and instance type. CLOUD-
TRACKER writes all provenance data as key-value pairs in the manifest file.

To record the inputs to a job, the job manager uses the track input() function to
supply CLOUDTRACKER with the same execution string that the job manager uses to
execute a job in an EC2 instance. This execution string contains the name of the exe-
cutable and all of the command-line input parameters. Input files must be provided with
a full file path in order to assure uniqueness and make them easier to locate. CLOUD-
TRACKER checks the filesystem for the existence of each input parameter, and those
that do exist are assumed to be input files. Upon discovery, these files are copied and
uploaded to the S3 bucket alongside the manifest. All of the other inputs are written to
the manifest file itself.

Finally, the job manager uses the track output() function to tell CLOUDTRACKER
the location of the output directory it uses for job results (other than standard output and
standard error, if any). This output directory location is also written to the manifest.

CLOUDTRACKER also requires that the job manager record metadata about the ex-
ecution of the job so that it can use it to estimate future costs. To do so, the job manager
times the execution of jobs and computes the size of the job output. CLOUDTRACKER
records this information in the manifest file of the job. This interaction relies on the job
manager returning the correct values to CLOUDTRACKER; if the job manager cannot
be trusted, CLOUDTRACKER can instead execute the job itself using its reproduction
engine. If the job manager participates in this way, it reduces the cost of reproduction
and cost analysis for future users of the job and data.

2.4 Job Reproduction

With all of the provenance data previously recorded, the reproduction process is straight-
forward. The only input CLOUDTRACKER requires from the user is the UUID of a job
to be replayed and the user’s public cloud credentials. CLOUDTRACKER uses UUID to
access the appropriate S3 bucket to obtain the manifest file and required input files.

CLOUDTRACKER launches an EC2 instance using the AMI ID and instance type
using the user’s cloud credentials. CLOUDTRACKER downloads the input files from S3
and stores them at the specified file paths. CLOUDTRACKER then reconstitutes the ex-
ecution string and invokes the job. Finally, CLOUDTRACKER collects standard output,



standard error, and any results in the output directory and returns them to the user via
links to S3 storage on a web page. CLOUDTRACKER also provides clean up utilities to
garbage collect results no longer of interest and to reuse or terminate instances.

2.5 Cost Analysis

The other key component of the CLOUDTRACKER platform is the cost analysis service.
The CLOUDTRACKER frontend allows users to specify or select the ID of a job for
which they want to perform analyses. The platform retrieves the execution time and
data set size in the job’s manifest, and using pricing information provided by the cloud
provider, estimates the cost of running that job and storing its data products in the
cloud. The CLOUDTRACKER presents a graph that identifies the crossover point for
computation and storage costs at which recomputing the result set via replay is less then
continued storage. The analysis accounts for the time to produce the results themselves.

If the performance and storage data is not stored in the job manifest for the for
one or more instance types, CLOUDTRACKER uses its reproduction engine to execute
the jobs for the types of interest. Each instance type provides differing computational
power at different costs to the user. Such runs are needed because execution time and
program behavior are specific to both the application and instance type. Using this util-
ity, CLOUDTRACKER automatically replays a job on one or more instance types in
parallel. The default instance types in our EC2 prototype include seven different in-
stance types ranging from t1.micro to c3.2xlarge. CLOUDTRACKER computes the cost
of using each instance type given the execution profile of the job running within each.
When the analysis is complete, CLOUDTRACKER presents the instance type that saves
the most time and the most money (if different) to the user, and records this information
in the job manifest for future use. CLOUDTRACKER uses reproduction if the time and
size estimates for a job are not available (e.g. if not trusted, or not yet reproduced) or if
requested by the user via the UI.

3 Prototype

To prototype CLOUDTRACKER, we target StochSS, a software platform that provides
job management for simulations of discrete stochastic models [20]. Such models are
useful for describing biological systems on the molecular scale (for which the number
of species copies is small) and simulating their behavior accurately. StochSS “service-
izes” the monte carlo based simulation engines that underly these technologies, includ-
ing StochKit2 [17], ordinary differential equations, and others, by wrapping them with
a web UI with which users can parameterize and customize their models, and a backend
that deploys simulations on different deployment targets, including Amazon AWS.

We extend StochSS with the CLOUDTRACKER library that the job manager makes
use of upon job deployment. The public StochSS VM image contains the simula-
tion applications and their software dependencies. Upon job submission, StochSS uses
the CLOUDTRACKER API to contact CLOUDTRACKER and request tracking of the
job (i.e. instantiation, track input, track output, and exec state). CLOUD-
TRACKER retrieves the AMI for the VM instance from the AWS metadata service and



the job’s ID for each unique job deployed. CLOUDTRACKER appends the ID to a unique
instance ID for the StochSS instance (so that it is able to correctly handle multiple
StochSS job managers concurrently). Although the simulations are stochastic, StochSS
is able to extract a known seed which it includes as part of the input string for each job.
Once this communication completes, users are able to use the CLOUDTRACKER UI to
replay or to analyze the cost of any previously executed StochSS job.

4 Empirical Evaluation

We next evaluate the overheads and efficacy of CLOUDTRACKER. We overview our
experimental setting and then describe our results.

4.1 Methodology

We empirically evaluate CLOUDTRACKER using StochSS version 1.2 and t1.micro in-
stances in AWS for provenance tracking. The simulation engine that we use in our
experiments is an ordinary differential equation with sensitivity analysis on four pa-
rameters for a dimer decay model. This job requires one input XML file and eight input
parameters.

We consider two simulation job sizes: large and small. The large job runs for ap-
proximately 500 million steps (10 measurements per unit) and generates 1TB of output
data. The small job runs for 10,000 steps which generates 22MB of output data. The in-
stance types that we use for CLOUDTRACKER cost analysis include t1.micro, m1.small,
m3.medium, m3.large, c3.large, and c3.2xlarge.

4.2 Empirical Evaluation

We first evaluate the overhead of CLOUDTRACKER. Figure 2 shows the manifest file for
an arbitrary StochSS job in its entirety. This example is 354 bytes in size and contains
all of the necessary information to reproduce the results of its representative job. The
only additional information needed is the one input file, the XML model file, which can
vary in size based on the model parameters. The XML file for the dimer decay model
is 2.47KB.

Of course the number of inputs and total input size (files include) is program spe-
cific and varies widely. However, CLOUDTRACKER does not add any additional storage
overhead to inputs and is able to compress inputs to reduce this size if needed. Since
CLOUDTRACKER uses S3 to store this information, the cost of S3 storage is on $0.03
per gigabyte per month. The CLOUDTRACKER prototype currently uses fewer than ten
S3 PUT operations which cost $0.005 per 1,000 requests. To retrieve provenance infor-
mation, the CLOUDTRACKER prototype currently uses fewer than 10 S3 GET requests
which cost $0.005 per 1,000 requests. In summary, CLOUDTRACKER is able to collect,
store, and access execution provenance data at very low cost.

Similarly, CLOUDTRACKER does not introduce overhead for replay beyond that
required for original job execution. The process of replaying a job requires CLOUD-
TRACKER to launch a single EC2 instance which takes approximately the same amount
of time as during the original run (on the order of a few seconds).



Fig. 2. Example StochSS job manifest file - 354 bytes with a single input file.

4.3 Cost Analysis

We next use CLOUDTRACKER to perform a cost analysis using the large simulation
job. Using the AWS m1.small instance type, job execution (and thus replay) takes 4.49
days; for m3.medium it requires 1.18 days; and for c3.large it requires 0.53 days. Fig-
ure 3 shows three graphs that exhibit the trade-off of storage and computational costs
as presented by CLOUDTRACKER. The graphs assume that the original data set is pro-
duced on Day 0.

In all three graphs, the cost of storing the 1TB output is the same and increases over
time (as determined by the AWS S3 pricing model). The computation cost data shows
the constant cost to produce the output data once; each graph shows the cost for each
of the three instance sizes we consider. In each graph, CLOUDTRACKER also plots the
Days to Recompute to show the amount of time required to recompute the data
via replay (relative to Day 0) if the data sets were deleted on Day 0.

For each instance type, there is a cross-over point for computation and storage. If
the data set is not used prior to this point, it is less costly to recompute the data. If the
data is used prior to this point, it is more cost efficient to store the data. In either case,
scientists and collaborators must also account for the time required to recompute the
data to ensure that they have the data ready when it is needed, if they choose not to
store it and instead compute it on-demand. Via its UI, CLOUDTRACKER presents these
plots to the user or reports the cross-over point and replay time so that users obtain
actionable insights from the tool that help them optimize the cost of cloud use.

CLOUDTRACKER also reports cost anomalies to users through its UI as part of its
replay and cost analysis service. Cost anomalies are non-intuitive cost trends that may
not be obvious to users. An example of a cost anomaly is when an instance price is
higher than another but a computation that uses it results in a lower overall cost. Such
an anomaly is depicted in the graphs in the figures. Each instance type is more expensive
than the previous: m1.large costs $0.044 per hour, m3.medium costs $0.07 per hour, and
c3.large costs $0.105 per hour. However, in each graph, the total cost of the computation
is reduced. This is because the application is able to take advantage of the additional
available resources in each case to compute in less time.
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Fig. 3. Computation time versus storage cost for the large StochSS simulation job (1TB data set
size) using m1.small, m3.medium, and c3.large instances sizes in AWS. Storage costs are the
same for all three graphs because the data size is the same. The vertical dotted line represents
the amount of time required to recompute the data set using CLOUDTRACKER replay on each
machine.

Such anomalies are application specific and hard to determine ahead of time. The
CLOUDTRACKER replay mechanism executes applications using different instances
sizes to establish such ground truth for users. CLOUDTRACKER can be configured to
run all or part of a program and to adjust its inputs accordingly to minimize the cost
of performing replay across different instances sizes. Moreover, for collaborative sys-
tems, CLOUDTRACKER can cache the results across users to employ crowd sourcing to
estimate these costs without direct replay. Finally, CLOUDTRACKER reuses instances
across job types and job managers when it is able to do so (compatible AMIs) in an
attempt to consume the full instance hour being charged for.

Figure 4 shows CLOUDTRACKER analysis for the small simulation job across all of
the instance sizes CLOUDTRACKER currently considers as part of its replay. We also
include a more detailed description of these results in Table 2; we consider average cost
on a sub-hour basis in this table. The data shows that there is a significant time savings
as we increase the size of the instance types (left to right). However, once the resources
are fully utilized by the application, adding more compute resources will not decrease
execution time and instead will only increase cost. For this job, CLOUDTRACKER iden-
tifies the c3.large as the best instance type which is over 8 times faster and provides a
37% reduction in cost over using t1.micro instances if the instances are used for a com-
plete hour for this job type. CLOUDTRACKER is able to present this information to
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Fig. 4. CLOUDTRACKER execution time comparison for the small (22MB data set size) StochSS
job, across the AWS instance sizes that the CLOUDTRACKER replay service considers.

users so that they can optimize their public cloud costs when computing, replaying, and
storing large data sets.

5 Discussion

The CLOUDTRACKER design allows provenance tracking, job reproduction, and cost
analysis to happen independently of and in concert with modern job management plat-
forms used today to deploy arbitrary programs over cloud infrastructures. However,
there are limitations with using CLOUDTRACKERthat we overview in this section and
are considering as part of on-going work on this project.

First, CLOUDTRACKER supports only programs that can execute within a single
virtual machine instance (i.e. distributed applications are not supported). Moreover,
CLOUDTRACKER is unable to support applications for which the results generated de-
pend on non-deterministic behavior (e.g. randomness, time-dependent inputs, external
input from services not available during replay, etc.). With this work, we target scien-
tific and data analytic programs for which the output (data product) is dependent only
on program inputs (command line and files) and the VM execution environment.

Second, CLOUDTRACKER is able to interact with only those job managers capa-
ble of communicating job provenance data through the CLOUDTRACKER API. If, for
example, the job manager is not capable of reporting the instance ID that is used for



t1.micro m1.small m3.medium c3.large m3.large m3.xlarge c3.2xlarge
Time (sec) 8.29 8.35 2.20 0.99 1.08 1.09 1.00

Rate (USD/hr) 0.02 0.04 0.07 0.11 0.14 0.28 0.42
Avg Cost (USD) 4.6x10−5 1.0x10−4 4.3x10−5 2.9x10−5 4.2x10−5 8.5x10−5 1.2x10−4

% Time
improvement
vs t1.micro None None 73.5% 88.0% 87.0% 86.9% 87.9%

% USD
savings

vs t1.micro None None 6.5% 37.0% 8.7% None None

Table 2. EC2 Instance Comparison for the small (22MB data set size) StochSS job.

job execution, CLOUDTRACKER will be unable to extract the execution provenance
(e.g. AMI information from the cloud metadata server) necessary to replay the job or
estimate cloud costs.

Third, CLOUDTRACKER use only makes sense for programs for which the cumu-
lative size of the inputs is significantly smaller than that of the outputs. That is, there is
only an opportunity to trade off computation for storage if the computation itself does
not have significant storage requirements. For some cases in which the input size is sig-
nificant but they are stored (which is paid for) by a third party (e.g. public data sets [19,
23, 2, 10, 11, 16] or a trusted collaborator), CLOUDTRACKER can be used to trade-off
processing and storage costs.

Next, CLOUDTRACKER currently requires that users make their AMIs accessible to
those with whom they wish to give reproducibility rights. That is, users can make their
AMIs public for everyone to reproduce their results or to a subset of users. CLOUD-
TRACKER can facilitate this process through its web UI but the owner of the AMI
is required to authenticate the change. Similarly, CLOUDTRACKER does not store the
output data or the AMIs used for jobs under its credentials. It currently relies on the
application progenitor or the job management system to do so. Such a model however
requires that the AMI owners do not delete their AMIs. CLOUDTRACKER is able to
make a copy of the AMI but will have to do so under the CLOUDTRACKER platform
owner’s credentials. As such, there is a question of who pays for and how to distribute
cost across CLOUDTRACKER users. In our current prototype, we assume that AMIs are
public and that they are not deleted (although CLOUDTRACKER reports any such issues
to users upon reproduction/cost analysis).

6 Related Work

Although we are unaware of any work that employs execution provenance tracking to
enable automatic and non-intrusive job replay and analysis of cloud cost trade-offs,
other researchers have explored data provenance for cloud systems [14, 1, 22, 9, 18].
Muniswamy-Reddy, et al., claimed that provenance is a crucial feature currently miss-
ing from most cloud datastores, so they implemented a provenance protocol for cou-



pling data and provenance information together in cloud storage. In addition to verifi-
cation, they identify faulty data propagation as another use case for data provenance,
pointing to the fact that scientists wanting to build off of one anothers work have no
means to verify that she is using data processed by the correct software [14].

Abaddi and Lyle, of the University of Oxford, move beyond the idea of data prove-
nance for applications running in the cloud to discuss the need for provenance in clouds
themselves. They show how provenance can be useful in the detection of bugs and se-
curity violations, and in the identification of their origins [1].

Finally, Zhang, et al., examine the different granularities of provenance required
to describe data at different levels in the cloud computing model. These levels are the
application, virtual machine, physical machine, cloud, and the Internet as whole. As the
focus becomes broader, so does the type of provenance that is interesting to track [22].
While our work focuses on collecting provenance information at the application and
virtual machine levels, there is definitely more information to be found at those higher
levels.

7 Conclusions and Acknowledgments

The goal of our work is to investigate and develop new tools that bring the utility and
potential of cloud computing to underserved communities such as those in the scien-
tific computing community. A key reason behind the lack of uptake in cloud use by
this community in particular is the difference in the cost models that underly scientific
computation versus those for commercial enterprise applications. In particular, scien-
tists require the ability to easily reproduce datasets (scientific results) for peer review,
collaboration, and extension purposes and to make these datasets available to others for
long periods of time.

In this paper, we investigate a tool called CLOUDTRACKER, that provides support
for cost estimation for such data life cycles. To enable this, CLOUDTRACKER provides
an easy to use cloud service (platform, client library, and UI) that extends the func-
tionality of cloud-based job managers to facilitate automatic cost trade-off analysis be-
tween storing data and regenerating it on the fly. CLOUDTRACKER does so by tracking
execution provenance so that it can reproduce the resulting data sets (for applications
for which this is possible). With the ability to accurately reproduce datasets, CLOUD-
TRACKER is also able to estimate and report the best cost trade-off between storing
data over time and reproducing it on-demand. We demonstrate the utility of CLOUD-
TRACKER for scientific simulations and find that it introduces negligible overhead (time
and cost). We also find that for many applications there is a cross over point after which
point it is more cost effective to regenerate the results rather than store them. In addi-
tion, CLOUDTRACKER is able to identify for users, opportunities for cost optimization
across instance sizes offered by the cloud infrastructure.

We thank the reviewers for their valuable feedback on this paper. This work was
funded in part by NSF (CNS-0905237 and CNS-1218808) and NIH (1R01EB014877-
01).
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